微积分X^3sin^2x x^4 2x^2 1 (-5.5)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:03:42
微积分X^3sin^2x x^4 2x^2 1 (-5.5)
微积分求解:∫sin^3 (x) cos^2 (x) dx

∫sin^3(x)cos^2(x)dx=∫sin^2(x)cos^2(x)sin(x)dx=-∫sin^2(x)cos^2(x)dcos(x)=∫[cos^2(x)-1]cos^2(x)dcos(x)

求微积分 ∫sin^2(x)cos^4(x) dx

sin^2(x)cos^4(x)=1/4*sin²2xcos²x=1/4*(1-cos4x)/2*(1+cos2x)/2=1/16*(1+cos2x-cos4x-cos2xcos4

求解微积分题积分题目∫2^x*3^x / (9^x-4^x) dx=?

我来给你做吧,首先被积函数分子分母同除以9^x变形,看下图吧

填词 一类10个 3-4个成语 1个三字词 其余2字 XX地哭 XX地笑 XX地说 XX地唱 XX地做跑跳 XX地想 X

伤心地哭开心地笑兴奋地说高兴地唱坚持地做跑跳呆呆地想傻傻地看

三角等式求证:cos^6x+sin^6x=1-3sin^2x+3sin^4x

用公式a³+b³=(a+b)(a²-ab+b²)cos^6x+sin^6x=(cos²x)³+(sin²x)³=(cos

微积分:∫sin²(2x+1)cos(2x+1)dx谢谢.

原式=1/2∫sin²(2x+1)cos(2x+1)d(2x+1)=1/2∫sin²(2x+1)dsin(2x+1)=1/6*sin³(2x+1)+C

求导 微积分4^sin(3x^2+8)这个式子求导`过程详细点哦~ 谢谢..

4^sin(3x^2+8)的导数=4^sin(3x^2+8)*ln4*【sin(3x^2+8)的导数】=4^sin(3x^2+8)*2ln2*cos(3x^2+8)*(6x)

解方程1/(xx+x)+1/(xx+3x+2)+1/(xx+5x+6)+1/(xx+7x+12)+1/(xx+9x+20

方程左边1/(xx+x)+1/(xx+3x+2)+1/(xx+5x+6)+1/(xx+7x+12)+1/(xx+9x+20)对分母因式分解得1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(

s = 2*sin(x)-sin(2*x)+2/3*sin(3*x)-1/2*sin(4*x)+2/5*sin(5*x)

x=0:0.1:2*pi;s=2*sin(x)-sin(2*x)+2/3*sin(3*x)-1/2*sin(4*x)+2/5*sin(5*x);plot(x,s)

微积分 求不定积分 ∫ [(cos2x) / (cos^2x * sin^2x)] dx

1.将分母变为sin2x即原式为∫[(4cos2x/sin^2(2x))]dx2.进行换元即2x变为t,原式变为∫[(2cos2x/sin^2t)]dt.3继续换元,可观察到(sint)'=cost.

问两道微积分题1. ∫sin(πx)cos(πx) dx2.∫0~3 |x^2-4|dx (|就是绝对值符号)请给详细过

1.∫sin(πx)cos(πx)dx=∫sin(2πx)/2dx=-cos(2πx)/4π+C2.∫0~3|x^2-4|dx=∫0~2|x^2-4|dx+∫2~3|x^2-4|dx=∫0~2(4-x

设sin(x^2+y)=x,求隐函数y的微积分dy

两边同时对x微分得dcos(x^2+y)=dx,即-sin(x^2+y)(2dx+dy)=dx,将dy移过去,变形得到-(1+2sin(x^2+y))dx/sin(x^2+y)=dy

大学微积分:lim(x→0)[(3sin x+x^2 *cos 1/X)/(1+cos x)*In(1+x)]=

lim(x→0)[(3sinx+x^2*cos1/X)/(1+cosx)*In(1+x)]=lim(x→0)1/(1+cosx)lim(x→0)[(3sinx+x^2*cos1/X)/In(1+x)]

化简[1-(sin^4x-sin^2cos^2x+cos^4x)/(sin^2)]+3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x

已知xx+yy+4x-6y+13=0,求(xx-2x)/xx+3yy的值.

xx+yy+4x-6y+13=0整理得:(x+2)^2+(y-3)^2=0那么只有(x+2)=0(y-3)=0x=-2y=3(x^2-2x)/(x^2+3y^2)=(4+4)/(4+3*9)=8/31

使用微积分基本原理 (1)∫(x sin√(x^2+4))/√(x^2+4) dx(2)∫x^2 sin(x^3+5)

(1)原式=1/2∫sin√(x²+4)/(√(x²+4)d(x²+4)=-∫sin√(x²+4)d√(x²+4)=cos√(x²+4)+C

(1-(sin^4x-sin^2xcos^2x+cos^4x)/sin^2x +3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x