微积分的通解y x=√x y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:16:59
微积分的通解y x=√x y
求微积分dy/dx=y/x+x的通解

令y/x=py=pxy'=p+p'x代入原方程得p+p'x=p+xp'x=xp'=1两边积分得p=x+Cy/x=x+C

dy/dx=xy的通解

dy=xydx1/ydy=xdxln|y|=x²/2+C∴dy/dx=xy的通解为y=±e^(x²/2+C)e^(x²/2+C)表示±e的(x²/2+C)次方再

求方程(y^2+xy^2)dx+(x^2-yx^2)dy=0的通解

∵(y^2+xy^2)dx+(x^2-yx^2)dy=0==>y²(1+x)dx+x²(1-y)dy=0==>[(y-1)/y²]dy=[(1+x)/x²]dx

求微积分方程y'+y=e^-x的通解

特征方程r+1=0r=-1因此齐次通解y=Ce^(-x)可以看出等号右边在通解里因此设特解是y=axe^(-x)y'=ae^(-x)-axe^(-x)代入原方程得ae^(-x)-axe^(-x)+ax

高数啦.求微积分方程的通解.

1.求微分方程(1+x²)y'=arctanx的通解(1+x²)(dy/dx)=arctanx,分离变量得:dy=[(arctanx)/(1+x²)]dx积分之,即得通解

求微积分方程dy/dx=x-y的通解

y`+y=x典型的一阶线性微分方程y`+P(x)y=Q(x)利用公式y=e^(-∫Pdx)*(∫Qe^(∫Pdx)dx+C)所以通解为e^(-∫1dx)*(∫xe^(∫1dx)dx+C)=e^(-x)

已知:y=1−8x+8x−1+12,则代数式xy+yx+2-xy+yx−2的值为(  )

∵1-8x≥0,8x-1≥0,∴x=18,y=12,∴代数式xy+yx+2-xy+yx−2=14+4+2-14+4−2=52-32=1.故选:B.

xy-3xy+2yx-yx

=xy-3xy+2xy-xy=-xy

微积分y’’+2y’+5y=0的通解

特征方程a^2+2a+5=0有共轭复根-1+2i,-1-2i所以通解为y=e^(-x)(C1cos2x+C2sin2x)再问:C1��ʲô再问:�������e��-x��再问:�躯��xe��sin

求微积分y'=y2的通解

dy/dx=y²dy/y²=dx积分-1/y=x+Cy=-1/(x+C)

xy+yx=10x,y是多少

xy+yx=10x+y+10y+x=11x+11y=100+x10x=100-11yx=10-1.1y所以y只能是0

求微积分dy/dx=1+x的通解

dy=(1+x)dx两边积分y=x+x^2/2+C

xy=yx 有什么关系?

乘法交换律,所以相等

求dx/dy-3xy=xy^2的通解

dx/dy-3xy=xy^2dx/x=(y^2+3y)dy两边积分得:lnx=y^3/3+3y^2/2+c==>x=exp(y^3/3+3y^2/2+c)=Cexp(y^3/3+3y^2/2)C常数

已知2x2-3xy+y2=0(xy≠0),则xy+yx的值是(  )

根据题意,2x2-3xy+y2=0,且xy≠0,故有(yx)2−3yx+2=0,即(yx−1)(yx−2)=0,即得yx=1或2,故xy=1或12,所以xy+yx=2或212.故选A.

微积分,求方程通解求方程(3x²+6xy²)dx+(6x²y+4y²)dy=0的

很明显这是个全微分方程用积分,从(0,0)沿x轴积到(x,0),再沿与y轴平行的直线积到(x,y)u(x,y)=∫(0,x)3x^2dx∫(0,y)6x^2y+4y^2dy=x^3+3x^2y^2+4

xy*yx=2268

即(10x+y)*(10y+x)=2268101xy+10x²+10y²=2268因为后面的10x²+10y²只可能是整十的数,所以2268中的个位8要靠101