AC是圆o的切线,bc交圆o于e点 若d为AC的中点证明de是圆o切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:35:39
连DO,DCBC为直径,CD垂直ADE为斜边中点,DE=CE,∠ECD=∠CDE(1)OD=OC,∠ODC=∠OCD(2)DE为切线,∠ODE=∠ODC+∠CDE=90度(1),(2)代换,∠OCD+
∵CD是⊙F的切线∴FD⊥CD∴在Rt△ABC中,CD=DF/(tan∠DCF)=DF/(tan∠OCA)∵AC是⊙O的切线∴OA⊥AC∴在Rt△OAC中,tan∠OCA=OA/AC∵AB是⊙的直径,
证明:连结AO,OC∵AB=AC,BO=CO∴AO是BC的垂直平分线∵AP//BC∴OA⊥AP∴AP是圆O的切线
证明:连接OP,OE.在△ABC中,CE=BE,OA=OB(⊙O半径)则E是CB中点,O是AB中点,则:OE∥AC,∴∠A=∠EOB,又∵圆周角等于圆心角的一半,∴∠POB=2∠A则:∠POE=2∠A
连接BD,OD∵AB直径∴∠adb=90°∴∠cdb=90°∴△cdb为RT△∴DE=CE=BE在△ODE与△OBE中 __ | DE
连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90
1连结OD∵OA=OD∴∠OAD=∠ADO∵D是弧BC的中点∴∠CAD=∠OAD∴∠CAD=∠ADO∴OD‖AE又∵DE⊥AE∴OD⊥DE∴DE是圆O的切线2过D作DH⊥ABH为垂足∵D是弧BC的中点
证切线有三种办法①与圆只有一个交点的直线(不太常用)②有已知交点,连半径,证垂直(根据切线判定定理)③无已知交点,作垂直,证半径(根据直线与圆的位置关系,d=r)第一题已知交点D,所以想到连半径所以只
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
证明:连结OD,因为BD=CD,OB=OA,所以OD为三角形ABC中位线,所以OD平行于AC,因为DE⊥AC,所以DE⊥OD,点D在圆上,OD为半径,所以DE是圆O的切线
△DOB∽△DECDE=EC=EBE为BC中点等等~~
连接OD,在三角形BOD和三角形BAC中,BO=OA,BD=DC(已知条件),由中位线定理,易得OD平行于AC.又因为角DEA=90度,得角ODE=90度,即OD垂直于DE,由切线判定定理易知DE为圆
∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可
D是弧BC中点,弧BD=弧DC,所以圆周角BAD=圆周角DAC=角DAE,作DG垂直于AB交AB于G,角DGA=90度;DE垂直于AC交AC延长线于E,故角DEA=90度,角ADG=90度-角BAD;
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
设PO交AC于D因为PA是圆O的切线所以PA⊥AB因为AB是直径所以AC⊥BC因为BC//OP所以PO⊥AC因为AB=2所以OA=1因为PA=√2所以PO=√3因为△AOD∽△POA所以可得OA/OP
(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O
连接OD(因为题目说了D在圆上)交EO于M∵BD∥OE∴∠B=∠AOE,∠BDO=∠DOE∵BO=DO∴∠B=∠BDO∴∠DOE=∠AOE∵在△DOM和△AOM中DO=AO∠DOE=∠AOEOE=EO