AC是圆O的直径,BC是圆O的弦,点P是圆O外一点,连接PB,PA角PBA=角C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:08:39
夜猫猫_涵er,(图见参考资料.)1)如图1.连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;同理
连DO,DCBC为直径,CD垂直ADE为斜边中点,DE=CE,∠ECD=∠CDE(1)OD=OC,∠ODC=∠OCD(2)DE为切线,∠ODE=∠ODC+∠CDE=90度(1),(2)代换,∠OCD+
证明:(1)连接BE,CE为直径,则∠CBE=90°.∴∠BEC+∠BCE=90°;又CD垂直AB,则∠CAD+∠ACD=90°.∵∠BEC=∠CAD.(同弧所对的圆周角相等)∴∠ACD=∠BCE.(
所以角ABC=90度\x0d因为AB为圆O的直径\x0d所以角APB=角BPC=90度因为OP=OB所以角OPB=角ABP\x0d因为角BPC=90度,CE=BE所以PE=BE所以角BPE=角PBC\
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
是三分之根号三或是根号三
分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵
∵x²+y²=r²∴B(-r,0),C(r,0),A(rcosQ,rsinQ)∴AB=(-r-rcosQ,-rsinQ),AC=(r-rcosQ,-rsinQ)AB*AC
解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略
1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C
连接OC,AC,BC...假设第一个三等分点为C,第二个三等分点为D∵C,D为半圆的三等分点∴CD∥AB 角COD=60°又∵OC=OD∴△OCD为等边三角形∴CD=OC=OA(半径相等)∴
设AB=2a(a>0)连接CA,CB;∵AB是圆O的直径∴∠ACB=90°∵点C是半圆上的三等分点∴弧AC﹙或BC﹚=60°∴∠ABC﹙或∠BAC)=30°∴AC﹙或BC)=½AB=a,BC
证明:连接BDAB为圆直径,∠ACB为直径所对圆周角,因此∠ACB=90AC=BC,所以∠A=∠ABC=45CD=AC=BC,∠DCB=180-∠ACB=90所以∠D=∠DBC=45∠ABD=∠DBC
连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A
设PO交AC于D因为PA是圆O的切线所以PA⊥AB因为AB是直径所以AC⊥BC因为BC//OP所以PO⊥AC因为AB=2所以OA=1因为PA=√2所以PO=√3因为△AOD∽△POA所以可得OA/OP
(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O