AD为ABC中线,E为AC上一点,AE=EF,求证BF=AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:47:40
连接D与CF的中点G,则在三角形BCF中,DG平行于BF,那DG肯定平行于EF,EF为5,则DG为10,那BF为20,BE为15
过B作AC平行线,交AD延长线于点GAC//BG,BD=CD==〉AD=GD==〉ABGC为平行四边形==〉AC=BGAC//BG==〉角CAG=角BGA又因为AE=EF==〉角CAG=角EFA角EF
延长AD至M使AD=DM.连接BM△ADC全等△BDM∠DAC=∠MAE=EF∠DAC=AFE=∠∠BFD∠M=∠BFDBF=BM=AC
证:倍长ED至M,连结MC在△BED和△CMD中BD=CD∠BDE=∠CDMED=MD∴△BED≌△CMD(SAS)∴MC=BE=AC∠M=∠BED∴EF∥MC∴∠AEF=∠M∵AC=MC∴∠M=∠D
我认为是AE=EF.那么延长AD一倍到G连BG,则BG=AC又∵AE=EF∴∠EAF=∠AFE=∠BFG=∠DGB∴BF=BG=AC
延长AD,取DG=AD,连结BG,CG,因D为BC的中点,则ABGC为平行四边形.由已知,AE=EF,所以∠EAF=∠AFE.又AC‖BG,所以∠EAF=∠BGF.在三角形BGF中,∠EAF=∠BGF
【不好意思,看到题目时太晚了】此题可用面积法证明,(此题中要用到的一个重要定理是:同高的两个三角形的面积比等于底边比)证:∵△AEC与△DEC同高∴S△AEC:S△DEC=AE:ED同理,S△AEB:
过点B作BG‖AC交AD延长线于G.∵AE=FE,∴角EAF=角AFE.又角AFE=角BFG(对顶角相等)角EAF=角G(两直线平行,内错角相等)∴∠BFG=∠G∴BG=BF.在三角形ACD和三角形G
延长FD至点G,使DG=FD,连接CG则可证三角形BFD全等于三角形CGD则BF=GC,角BFD=角CGD因为BF=AC,所以AC=GC所以角DAC=角CGD所以角BFD=角DAC又因为角BFD=角A
由C做CE‖AB,做BE‖AC相交于点E;连接ED;因ABEC是平行四边形,且三角形ABC≌EBC;所以AE=BC=2;平行四边形两对角线相等,则此平行四边形为矩形;设AB=c,AC=b;b+c=2.
延长AD至G,使DG=AD,连BG.易知△BDG≌△CDA(SAS),∴BG=CA,∠BGD=∠CAD.∵AE=EF,∴∠CAD=∠AFE=∠BFD,∴∠BGD=∠BFD,∴BF=BG=AC.
简单.过D点作DG平行BF交AC于G点.G点为CF的中点.易得DG为三角形CBF对应BEF的中位线,EF为三角ADG对应DG的中位线.故DG=0.5BEDG=2EF代入EF=5CM得BF=20CMBE
延长AD到P,使DP=FP因为AD是三角形中线所以△BFD≌△CPD∠BFD=∠P因为AE=EF所以∠EAD=∠AFE=∠BFD=∠P即△PAC是等腰三角形AC=CP=BF
作经过D的辅助线DF垂直于BC,则点F必在BE上,易证三角形BDF全等于三角形CDF(SAS),得到∠EBC即∠FBC=∠FCB,而∠ECB=∠FCB+∠ECF综上,∠EBC=∠FCB<∠ECB
∵AB=AC=10cm,BC=12cm,AD是△ABC的中线,∴BD=DC=12BC=6cm,AD⊥BC,∴△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴
证明:延长FD到M,使DM=DF,连接CM.又BD=CD,∠CDM=∠BDF,则⊿CDM≌⊿BDF(SAS),得CM=BF;∠M=∠BFD.又∠BFD=∠AFE=∠FAE,故∠FAE=∠M,得:AC=
证明:如图,过BM⊥AD于M,CN⊥AD于N,∵AD为△ABC的中线,∴BD=CD,在△BDM和△CDN中,∠M=∠CND=90°∠CDN=∠BDMBD=CD,∴△BDM≌△CDN(AAS),∴BM=
证:延长AD到G使DG=AD,连结BG ∵DG=AD ; BD=DC ∠BDG=∠ADC
相等,理由如下:延长AD,取DG=AD,连结BG,CG,因D为BC的中点,则ABGC为平行四边形.由已知,AE=EF,所以∠EAF=∠AFE.又AC‖BG,所以∠EAF=∠BGF.在三角形BGF中,∠
题目不完整!问题是角AH?还有没说明三角形ABC是什么三角形