AD是三角形ABC的中线,,角CAD等于60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:17:02
AD是三角形ABC的中线,,角CAD等于60度
如图,AD是三角形ABC的中线,求证

证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(

一初二数学题目------“在三角形ABC中,AD是BC边上的中线.求:AD

延长AD到E,使得DE=AD,连接BE则易知三角形BDE全等于三角形CDA.因此BE=AC在三角形ABE中,AE

如图,ad是三角形abc的bc上的中线,求证:ad

延长AD到E,使DE=AD,连结BE∵BD=CD,DE=AD,∠BDE=∠ADC∴△ADC全等于△EDB∴AC=BE在△ABE中,AB+BE>AE即AB+AC>2AD∴AD

三角形ABC中,角BAC=90度,MN是三角形ABC的中位线,AD是BC上的中线.

用到两个定理1.直角三角形斜边中线等于斜边一半2.中位线平行边且为边长的一半∵△ABC为RT三角形又∵AD是BC上的中线∴AD=BC/2∵MN是中位线∴MN=BC/2∴AD=MN

已知AD是三角形ABC的中线,角ADC=45度,把三角形ABC沿AD对折,点C落在点E的位置,

把三角形ABC沿AD对折后△AED≌△ACD则∠ADC=∠ADE=45°DE=DC=BD=1/2BC=3则∠EDC=90°∠BDE=90°S△BDE=1/2*BD*ED=9/2过E作EF⊥AD交AD于

如图所示,在三角形ABC中,AD为BC边上的中线,是说明AD

延长AD至E,使AD=DE.ABD全等CDE,ADC全等BDE,所以ABEC是平行四边形.AE=2AD

在三角形ABC中,AD是BC的中线.证明AB+AC>2AD

延长AD到点E,使DE=AD,连接DE易证三角形ADC与三角形BDE全等(SAS)则AC=BE在三角形ABE中,AB+BE>AE所以AB+AC>2AD

在三角形abc中,ad是边bc的中线,证明:ab+ac>2ad

中线倍长法延长AD至E使DE=AD,连接EB在三角形ADC与三角形EDB中,CD=BD,AD=ED,∠ADC=∠EDB所以三角形ADC≌三角形EAB(SAS)所以AC=EB,在三角形EBA中,AB+B

几何求证题--三角形ABC中,AB>BC,AD是三角形ABC的中线.求证角BAD

题目没写对AD是三角形ABC的中线,三角形有三条中线,请问是哪一条呢?

如图,AD是三角形ABC的中线,求证:BC+2AD>AB+AC

根据三角形两边之和大于第三边,AD为中线,所以,D点在BC上,所以BD+AD>AB,DC+AD>AC,两式相加,所以BC+2AD>AB+AC

三角形ABC中,AD是角BAC的角平分线,AD是BC边上中线.求证:三角形ABC是等腰三角形

如图,延长AD到F,使DF=AD,连接CF,在△ABD和△CFD中,∠ADB=∠CDF,BD=CD,AD=FD∴△ABD≌△FCD∴∠BAD=∠F,AB=CF∵∠BAD=∠CAD∴∠CAD=∠F∴AC

AD是三角形ABC的中线,AE=2AD,CE=AB,是证明角E=角BAO

第三题应该是最别扭的题光先打上第三题吧.顺便练练打字.作FC垂直AF,交AD延长线于点F,所以角ACF是90度.然后证三角形AFC全等于三角形BMA,用两角一边很好证,不打了.所以CF=AM=MC,角

AD是三角形 ABC 的中线AE是三角形 ABD的中线 CE 等于9厘米BC等于多少厘米?

因为AD是三角形 ABC 的中线所以BD=CD所以2CD=BC因为AE是三角形 ABD的中线所以BE=DE所以2DE=CD因为CE=CD+DE=2DE+DE=9所以DE=

三角形ABC中,AD是中线,AB=4,AC=8,试求中线AD的取值范围.

延长中线AD至E,使DE=AD连接BE可以证明三角形BDE全等于三角形CDA然后AB+BE>AE>BE-AB12>AE>4因为AE=2AD所以2

1.三角形ABC中,AD是中线,AB=4,AC=8,求中线AD的取值范围.

将三角形拓展成平行四边形,即作CE平行于AB,作BE平行于AC,交点是A,那么ABC的中线AD是平行四边形对角线AE的一半,D就是对角线交点.这样由三角形ABE的边AE的取值范围得到AD的取值范围.即

三角形abc和ABC,ab=AB ,ac=AC,ad与AD分别是两个三角形的中线,且AD=ad,求三角形abc与ABC

用向量做:向量AD=(向量AB+向量AC)/2向量BC=向量AC-向量AB于是BC的长度|BC|=|向量AC-向量AB|=|[(向量AC)^2-(向量AB)^2]/(向量AB+向量AC)|=2(|AC