ae^(-x)的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 19:39:47
令e^x=u,则du=de^x=e^xdx=udx,有du/u=dx所以原式=∫du/u(1+u)²=∫du/u-∫du/(u+1)²-∫du/(u+1)=lnu+1/(u+1)-
先进行换元,令根号x=t再答:
肯定的啊,就是乘以1了啊.1/sinx=(1*sinx)/(sinx*sinx)=sinx/(sinx*sinx)要什么公式啊?
分步积分=0.5积分号lnxdx*x=0.5x*x*lnx-0.5x*x
1+x^4=(1+x²)²-2x²=(1+x²+√2x)(1+x²-√2x)1/(1+x^4)=[1/(1+x²-√2x)-1/(1+x&s
再问:非常感谢您的指点。
∫(-1到1)dx/(x²+1)²=2∫(0到1)dx/(x²+1)²令x=tanz,dx=sec²zdz当x=0,z=0//当x=1,z=π/4=2
∫x/(1+x²)dx=1/2*/d(1+x²)x/(1+x²)=1/2*ln(1+x²)+C
∫1/(x^4+4)dx=∫1/(x^2+2i)(x^2-2i)dx=∫(1/-4i)[1/(x^2+2i)-1/(x^2-2i)]dx=1/-4i∫dx/(x^2+2i)-1/-4i∫dx/(x^2
既要换元,又要分部,还涉循环积分.初学者有难度.
∫sec^4xdx=∫sec^2xd(tanx)=∫(tan^2x+1)d(tanx)=tan^3x/3+tanx+C
∫13^xdx=13^x/ln13+C再问:这是用的什么公式?再答:∫a^x=a^x/lna+C
取u=x+t,du=dt积分变为f(u)du上限为2x下限为a+x若f(x)存在原函数F(x)那么这个积分为F(2x)-F(a+x)
分部积分法∫xsinxdx=-xcosx+∫cosxdx=-xcosx+sinx+C(C是积分常数)
原式=-∫(lnx)²d(1/x)=-(lnx)²/x+∫(1/x)d(lnx)²=-(lnx)²/x+∫2lnx/x²dx=-(lnx)²
原式=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C=(x-1)e^x+C
∫dx/(1-x^2)=∫dx/(1+x)(1-x)=∫dx(1/(1+x)+1/(1-x)=∫dx/(1+x)+∫dx/(1-x)=∫d(x+1)/(1+x)-∫d(x-1)/(x-1)=ln(x+
x²/(1+x²)=1-1/(1+x² ∴∫1-1/(1+x²)dx=x-∫1/(1+x²)dx=x-arctanx+c再问:再问:箭头指的再答:你
原式=∫xdx/(1+x^2)-∫arctanxdx/(1+x^2)=1/2*∫d(1+x^2)/(1+x^2)-∫arctanxdarctanx=1/2*ln(1+x^2)-1/2*(arctanx
dx/x(1+x^4)=x^3dx/x^4(1+x^4)=dx^4/4(x^4+x^8)=dx^4/4x^4+dx^4/4(1+x^4)=(lnx^4)/4-ln(1+x^4)/4上下同乘x^3,就很