ag垂直于be于g,dc垂直于be于c交ae于点f角d=角cfe

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:49:02
ag垂直于be于g,dc垂直于be于c交ae于点f角d=角cfe
三角形ABC中,角B,角C的平行线BE,CF相交于O,AG垂直BE于G,AH垂直CF于H(1)求证:GH平行BC

是角B,角C的平分线吧证明:延长AH交BC于I用角角边证明⊿AHC≌⊿IHC∴AH=HI同法延长AG交BC于J∴AG=GJ∴GH‖BC2题IJ=IC+BJ-BC=AB+AC-BC=9+14-18=5∴

如图,在三角形ABC中,∠B ∠C的平分线BE CF相交于点O,AG垂直CF,垂足为G,AH垂直

分析若延长AG,设延长线交BC于M.由角平分线的对称性可以证明△ABG≌△MBG,从而G是AM的中点;同样,延长AH交BC于N,H是AN的中点,从而GH就是△AMN的中位线,所以GH‖BC,进而,利用

如图所示,已知:AB是圆O的直径,弦CD垂直AB于点E,点G是弧AC上任一点,AG,DC的延长线

连接GB,因为AB垂直于CD,CE=ED,所以BCD是等腰三角形=>BC=BD.所以,角CGB=角BGD.因为AB是直径,所以角AGB=角FGB=90.所以,角AGB-角BGD=角FGB-角CGB=》

在三角形ABC中,AD平分角BAC,DG垂直BC于G,DE垂直AB于E,DF垂直AC于F,且BE=CF.

1)因为(AG=AG)(角BAG=角GAC)(角AGB=角AGC)所以三角形ABG全等于三角形AGC(ASA),所以BG=CG

如图,四边形ABCD是正方形,G是BC上一点,DE垂直AG于E,BF垂直AG于F

因为正方形ABCD,所以AB=AD,又因为DE,BF都垂直于AG,所以角DEA等于角BFA等于90度,又因为角DAE+角GAB=90度,角GAB+角ABF=90度,所以角ABF=角DAE,所以:△AB

已知如图,1AB垂直于BE,ED垂直于BE ,点C在BE上,AB=CE,BC=ED ,求证;AC垂直于DC.

证明:∵AB⊥BE,DE⊥BE∴∠ABC=∠CED=90º又∵AB=CE,BC=DE∴⊿ABC≌⊿CED(SAS)∴∠A=∠DCE∵∠A+∠ACB=90º∴∠DCE+∠ACB=90

三角形ABC中,AD垂直于BC,BE垂直于AC,BE和AD交于F点,且DF=DC求证BD=AF+CD

由于两个垂直所以角EBC+角C=90角DAC+角C=90所以角EBC=角DAC在三角形BDF和三角形ADC中角EBC=角DACDF=DC所以全等所以BD=AD=AF+FD=AF+CD

在直角三角形abc中,角bac等于90度,ag垂直bc于点g,bd平分角abc,ae垂直bd于点h,交bc于点e,ag于

解题思路:本题考察了全等三角形的判定和性质,结合等腰三角形的性质,即可证明。要注意:等角的余角相等,对顶角相等。解题过程:

如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直AB于点E,BF垂直AG于点F,当点G

(1)证明:  ∵四边形ABCD是正方形,BF⊥AG,DE⊥AG  ∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°  ∴∠BAF=∠ADE  ∴△ABF≌△DAE  ∴BF=AE,AF=

如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直于AG于点E,BF平行于BE,且交AG于点F.求证:AF=B

20∵四边形ABCD为正方形∴∠DAF=∠B=90°,AD=AB=BC∵DG⊥AE∴∠DGA=90°∴∠ADF+∠DAG=90°∵∠BAE+∠DAG=∠A=90°∴∠ADF=∠BAE在△ADF和△BA

在三角形abc中,ad垂直于bc于点d,be垂直于ac于点e,ad等于bd,求证:af+dc=bd

角dac=ebc角adb=adcad=bd所以fbd和adc全等所以fd=dcaf+dc=af+fd=ad=bd再问:为什么角dac=ebc再答:因为角ADC=角BEC=90度又因为角ADC+角C+角

AB是圆o的直径,炫cd垂直于ab于E,G是弧AC上一点,AG,DC延长线交于F.求角FGC等于AGD

∵AB是圆o的直径,DC⊥AB∴AC=AD∴∠ACD=∠ADC∵∠ACD=∠AGD∠FGC=∠ADC∴∠FGC=∠AGD

如图一.四边形ABCD是正方形,点G事BC上任意一点,DE垂直于AG于点E,BF垂直于AG于点F.

2)EF:GF=2,理由:△BGF∽△AGB∽△ABF,   △ABF≌△DAEG为BC边中点,  BG:AB=FG:BF=BF:AF=1:2,&nb

如图所示四边形ABCD是正方形,点G是BC上任意一点DE垂直于AG于点E,BF垂直于AG于点F.

1)延长DE交AB于H∵DE⊥AG,BF//DE∴BF⊥AC,∠DAG=∠AHD∵AD∥BC==>∠DAG=∠AGB∴∠AGB=∠AHD,△BGF∽△DAE∴△AHD≌△GBA又∵G为BC边中点∴H为

如图 在三角形abc中 角平分线ad be cf相交于点h 过点a作ag垂直于be 垂足为g

等于由题可知:∠BAD+∠CAD+∠EAG+∠ABG=90°因为2(∠ABG+∠BAD+∠ACF)=180°所以∠BAD+∠CAD+∠EAG+∠ABG=∠BAD+∠ACF+∠ABG即∠CAD+∠EAG

如图,三角形ABC中,角ACB=90度,CD垂直AB于D,E是DC延长线上,AG垂直BE,分别交CD于F,交BG于G.试

这题很简单先证三角形ADF和三角形EDB相似,这个不难然后得出AD/FD=ED/DB即ED*FD=AD*DB在证三角形ACD相似于三角形CBD,这个也不难、然后得CD/AD=DB/CD即CD平方=AD

如图,梯形ABCD中,AB平行于CD,AD=DC=CB,AD,BC的延长线相交于G,CE垂直AG于E,CF垂直于AB于F

图呢?DE=BFAE=AFAG=BGCE=CFGD=GC证GC=GD由梯形ABCD,AB平行于CD,AD=CB,可得该梯形为等腰梯形,所以角D=角BCD而在三角形GCD中,角D=角BCD所以GD=GC

如图所示,在矩形abcd中,f十bc边上的一点,af的延长线交dc的延长线于g,de垂直ag于e,

你的题目里是不是想说AF的延长线交DC的延长线于点G如果是这样,那就是△ABF≌△DEA证明:∵AB‖DG,∴∠BAF=∠G∠G+∠EDC=90°,∠EDA+∠EDC=90°,∴∠G=∠EDA,∴∠B

已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,作AG垂直于BE于G ,AG交BD于点F.,求证:OE=

证明三角形CEB三角形BFA全等,可得BE=AF,再证明三角形AOF三角形BOE全等,所以OE=OF