怎么 证明特征值的n次方为原方阵n次方的特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:11:35
设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,
设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值
由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应
A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.
可以.考虑矩阵的秩,有:R(AB)≤R(A),则n=R(E)=R(A^K)≤R(A)≤n,R(A)=n所以A是非奇异阵,可以对角化.
需两个知识点:1.零矩阵的特征值只有零2.若λ是A的特征值,g(x)是x的多项式,则g(λ)是g(A)的特征值本题目的证明:设λ是A的特征值,则λ^k是A^k的特征值因为A^k=0,而零矩阵的特征值只
证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.
λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变
这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
这个书上有对任意的方阵A,B|AB|=|A||B|对于A的k次方,可以由归内法证明.k=1时,有|A|=|A|是显然的设k=n时成立,即|A^n|=|A|^n那么当k=n+1时|A^(n+1)|=|A
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值
λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λx=ABx=0,得λ=0,矛盾).所以Bx是BA的属于特征值λ的特征向
A^T·x=(a11+a12+……+a1n,a21+a22+……+a2n,……,an1+an2+……+ann)^T=(2,2,……,2)^T=2x根据特征值与特征向量的概念,x为A的T次方的特征向量,
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
三阶方阵A的3个特征值为1,2,-4,则A(-1次方)的三个特征值1,1/2,-1/4.请楼主参考!
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
这个结论是对的呀再问:关于矩阵下面说法错误的是:1.矩阵的秩等于该矩阵的行向量组的秩;2.矩阵的秩等于该矩阵的列向量组的秩;3.一个n阶方阵的不同特征值对应的特征向量线型无关;4.相似矩阵有相同的特征
设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a
设特征值b1--bn对应的特征向量为v1--vn.问题显然是对称的,不失一般性,考虑A-b1.显然,(A-b1)v1=Av1-b1v1=b1v1-b1v1=0,这说明0是A-b1的一个特征值.而(A-