怎么化等价标准性矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:04:36
不一样."等价关系"指的是满足自反、对称、传递三种性质的关系,适用于所有的学科、所有的数学分支.矩阵的等价指的是可以通过初等变换互换.至于为什么这样称呼,已经不知道原因了.可以给你一种便于理解的解释:
再问:请问这个是标准形吗?我也解得这个答案,但是不知道标准型。再答:这个是标准型的
A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等.而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了.比如特征值相同,行列
矩阵的相似:设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)*A*P=B成立,则称矩阵A与B相似,记为A~B.矩阵合同:两个矩阵和是合同的,当且仅当存在一个可逆矩阵,使得A=P^T*B*
行列变换的用法要看具体情况求行最简形,梯矩阵,解线性方程组,极大无关组时只能用行变换求等价标准形,矩阵的秩可行列变换混用,矩阵的秩不变,仍与原矩阵等价
先用初等行变换化成行最简形然后用列变换化成等价标准形在上例中得到10-10401-1030001-300000c3+c1+c2,c5-4c1-3r3+3r4交换一下列就化成了等价标准形.
1-3451-3450-411113411342-279-->2-279-->0-411-->0-411-->01-1/4-1/4-->3391211341134000000001011/417/40
广泛意义的等价,是集合在某种变换下保持不变性.如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到.矩阵在初等变换下是行列式不变的.在线性代数中,合同、相似都是等价关系
Gram-Schmidt正交化的每一步都是初等变换,当然保持秩不变至于一楼所说的特征值不变纯属无稽之谈,Gram-Schmidt正交化未必只针对方阵,即使是方阵也不保证特征值不变再问:能保证吧?相似矩
矩阵的等价标准形是左上角是单位矩阵,其余都是0的矩阵如100001000000
有个关于秩的结论:若P,Q可逆,则r(A)=r(PA)=r(AQ)=r(PAQ).A,B等价,即存在可逆矩阵P,Q,使得PAQ=B.
先用行变换,从左到右逐列处理比如111112341342r2-r1,r3-r1111101230231r3-2r21111012300-1-5这是梯矩阵此时用列变换c2-c1,c3-c1,c4-c11
初等变换不改变矩阵的秩(定理)因为A,B有相同的等价标准形所以A与B等价即存在可逆矩阵P,Q使得PAQ=B即A经过初等变换可化为B所以R(A)=R(B)再问:老师我还有一个问题就是做的一道选择题有这两
广泛意义的等价,是集合在某种变换下保持不变性.如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到.矩阵在初等变换下是行列式不变的.在线性代数中,合同、相似都是等价关系再问:ʲô�Ǻ�ͬ���
就是说二元组合(a,a)满足等价这个二元关系.并不是对所有的二元关系,反身性都能成立的.例如小于关系,显然a
如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型.再问:可
1224r2-r11200c2-2c11000
你写成行列式了.r1-r3012012311r1-r2,c1*(1/3),c2-c1,c3-c1000012100c3-2c2000010100r1r3100010000
化成什么标准形?如果是Jordan标准型,则该矩阵首先必须是方阵.