怎么知道n重根有n个线性无关的向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:43:14
怎么知道n重根有n个线性无关的向量
n个n维向量线性无关的证明

这个证明不对,除非你能够证明出(1)是b的唯一表示法,否则这样是不行的.充分性:取n个线性无关的n维向量b1,b2,..,bn,由必要性知任一n维向量均可由b1,b2,...,bn线性表示,也就是说a

为什么不同特征值对应的特征向量一定线性无关?还有怎么判断一个n阶矩阵有n个线性无关的特征向量?

特征值a的几何重数就是 n-r(A-aE)也就是齐次线性方程组 (A-aE)X=0 的基础解系所含向量的个数几何重数不超过代数重数

为什么任一n维非零向量都是A的特征向量 A就有n个线性无关的特征向量

这不很显然么?n维空间的维数既然是n,根据维数的定义,肯定有n个线性无关的向量.既然任意一个n维的都是它的特征向量,那么这n个线性无关的向量也必然是,所以它肯定有n个线性无关的特征向量再问:能不用向量

由n个线性无关向量作为列组成的矩阵秩为n…秩和线性无关什么关系?高手点播…

由n个线性无关向量作为列组成的矩阵秩为n最简单易懂的来讲,就是:矩阵的秩=矩阵的线性无关的向量的个数这里线性无关的向量有n个,那么组成的矩阵的秩肯定是n希望对你有帮助,望采纳,谢谢~

求证一个线性相关的定理 设向量组N是M的子集,若M线性无关,则N线性无关.这个怎么证明?

反证,若n线性相关,写出来,带入m,其他的为0,可得到m线性相关!

n维空间的一组基含有多少个线性无关的向量?

既然都是n维空间了,一组基当然就是n个无关的向量.

为什么n维线性空间中的n个线性无关的向量都可以构成它的一组基?

在空间中任取一个向量b加入这n个线性无关的向量ai(i=1,2,...,n)那么这n+1个向量一定是线性相关的故存在一组不全为0的ki(i=1,2,...,n)和c使得k1*a1+k2*a2+...+

设n阶矩阵A,B有共同的特征值,且各自有n个线性无关的特征向量,则

(A)显然不对(B)不对(C)正确(D)尽管|A|=|B|,但前提与(C)矛盾选(C)再问:为什么A相似B再答:A,B有共同的特征值,且各自有n个线性无关的特征向量所以A,B都可对角化,且都相似于同一

n阶矩阵A能不能有n 1个线性无关的特征向量?

n阶矩阵A最多有n个线性无关的特征向量,因为n阶矩阵的特征向量必然也是n维的,而n维空间的向量也最多只有n个是线性无关的.

一道线性代数习题证明对任意的m>n,存在m个n维向量,使得任意n个向量线性无关.是使其中任意n个都线性无关

可以举特例证明确实存在这么m个n维向量,如,以范德蒙行列式来构造m个n维列向量,在n阶范德蒙行列式的基础上增加至m列,n行矩阵,那么任意选择n个列向量的话,都构成范德蒙行列式,这样任选的n个向量线性无

线代的题:n维向量空间中有n个向量是线性无关的 详见补充

任何一个向量与基合在一起组成的n+1个向量的向量组,必定是线性相关的!其实n维空间里,任何n+1个向量构成的向量组,都必定线性相关.换句话说,n维空间里至多能找出n个线性无关的向量来!

若n阶矩阵A有n个属于特征值1的线性无关的向量,怎么证此时A为n阶单位矩阵.

把n个线性无关的特征向量拼成一个可逆阵P=[x1,x2,...,xn],那么AP=P=>A=I再问:лл�����Ѿ�������ˣ�һʱ��Ϳ���ܼ

知道n维空间的的r个线性无关向量,怎样求这个n维空间的标准正交基

先将r个向量正交化设(x1,...,xn)与已知的r个向量正交可建立r个方程的齐次线性方程组其基础解系含n-r个向量,正交化之全部单位化即得标准正交基

n+1个n维向量必定线性相关,而线性相关于线性无关又与方程组的解联系起来了,这其中我有一些不明白.线性相关于线性无关其实

先说线性无关的情况吧,如果n个向量线性无关,说明有用的方程就有n个(也就是秩的值),这时,1、如果未知数的个数大于n(未知数个数多于方程个数),肯定就有无穷多组解;2、如果未知数个数等于n(n个未知数

为什么n个线性无关的n维向量都是Rn的一组基?

因为Rn中的任意一向量均可由这n个线性无关的n维向量线性表出,故它是Rn的一组基.下面证明这一事实,设X是Rn中的任意一向量,a1,a2,...,an是n个线性无关的n维向量,由Rn中任意n+1个向量