怎么证明an与bn和的平方级数收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:06:05
怎么证明an与bn和的平方级数收敛
若级数∑an^2和∑bn^2都收敛,求证:∑an的绝对值/n收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

数列an的前n项和为Sn=2^n-1,设bn满足bn=an+1/an,判断并证明bn 的单调性

Sn=2^n-1=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)bn=an+1/an=2^(n-1)+1/(2^(n-1))那么有bn-b(n-1)=(2^(n-1)-2^(n-2

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

证明级数的收敛若级数an(n从1到无穷)收敛,数列bn收敛,证明级数anbn(n从1到无穷)收敛,提示说用柯西收敛准则,

这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散

级数∑Bn,∑An-A(n-1)收敛,证明∑An*Bn收敛

∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛

设两个级数都收敛,证明两个级数和的平方也收敛

an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默

数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn

1an=Sn-Sn-1=4an-4an-14an-1=3anan/an-1=4/3a1=4a1-3,a1=1an=1*(4/3)^(n-1)2b1=2b2=a1+b1=3b3=b2+a2=2+1+(4

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

已知数列{an}的前n项和Sn=2n平方+2n,数列{bn} 的前n项和Tn=2-bn 求数列{an}与

由题意,S(n+1)=2(n+1)^2+2(n+1),所以a(n+1)=S(n+1)-Sn=4n+4即an=4n(n≥2).当n=1时也成立,所以an=4n.bn请稍等再答:T(n+1)=2-b(n+

高数证明题!若数列{nan}有界.证明级数(an的平方)收敛!

nan《M,则an《m/n,(an)^2《m^2/n^2,而级数1/n^2收敛,故由大M判别法知原级数收敛.你懂得?

级数的收敛与发散性,BD分别怎么证明,

B:有比值判别法(记得复习),lim(n->00)an+1/an=e/PI再问:收敛+发散就等于发散????再答:这个是的,因为如果她不发散就收敛,收敛加收敛还是收敛,就不发散了。再问:那发散加发散还

已知数列{an},an=2n-1,{an}和{bn}满足等式an=b1/2+b2/2平方+b3/2三次方+.bn/2的n

a(n+1)-an=b(n+1)/2的n+1次方=2n次方是对2吧,也就是说分母是2的n次方,对吧!如果对2,那么bn=2的n+1次方(n>1),b1=2,Sn=(2的n+2次方)-6

等比数列{bn}与数列{an}满足bn=3的An次方,判断{an} 是何种数列,并给出证明

设{bn}共比为q则q=b(n+1)/b(n)=3^a(n+1)/3^a(n)=3^[a(n+1)-a(n)]所以a(n+1)-a(n)=log(3,q)是定值,所以{an}是等差数列若a8=a13=

级数an与bn都发散,(an平方+bn平方)发散吗?

不一定发散再问:能具体解释下吗?不明白啊……求教再答:比如an=sin(nπ)bn=cos(nπ)然后不就有结论了吗?再问:sin(nπ)不是都等于0吗?那样an不就收敛了……sin(nπ)平方加上c

搞死判别法怎么证明就是对于级数∑An,An是复数,n趋向∞时,An/An+1=1+u/n+o(1/n的平方);Re u>

要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论.要证明一个命题是假命题,只需举出一个反例说明命题不能成立.

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再