怎么证明等边三角形内任意一点到三点的距离和小于2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:53:16
因为PA〈AB即PA〈BC又PB+PC〉BC(三角形两边之和大于第三边)所以PA〈BC〈PB+PC即PA〈PB+PC
证明:因为P到三边的距离相等所以P是△ABC的角平分线的交点∵△ABC是等边三角形∴P是△ABC的三条垂直平分线的交点∴PA=PB=PC
这个问题应该利用的是旋转的数学思想哦~我的答案可能不是最佳的,但是希望能给你一点启发.将三角形ABM绕点A逆时针旋转60度使边AB与AC重合.连接MM'得三角形MM’C为直角三角形(3,4,5
证明:设三角形内任意一点为P,过P点作BC边的平行线EF,分别交AB、AC于E、F.∵ΔABC为等边三角形,∴∠AFE=∠ABC=60°,又∵∠APE>∠AFE,∴∠APE>60°.在ΔAEP中,∵∠
过O点分别作等边三角形三条边的平行线得到条件三角形OMN,OPQ,OST均为等边三角形.(自己草稿上画画)AD+BE+CF=AS+SD+BM+ME+CP+PF=(BM+MN+NC)+(SD+ME+PF
过三角形的三个顶点作对边的平行线,得△A'B'C',则A.B.C分别是三角形A‘B’C‘三边的中点,易知△ABC的三条高恰好垂直平分△A'B'C'的三边
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
证明:首先按照题意画出图.然后以C点为轴将三角形APC旋转至AC与BC重合,此时A点与B点重合,P点到达的新位置设为D点.连接DP.由于角DCP为60度且CD=CP,所以三角形DCP为正三角形,所以D
不是,三角形的外一点就不同
错题一个,除非B是最小角,否则不一定成立.
用面积法证明,连结PA,PB,PC∵S△PBC+S△PAC+S△PAB=S△ABC即1/2PD*BC+1/2PE*AC+1/2PF*AB=1/2AM*BC又∵AB=AC=BC∴PD+PE+PF=AM
过A作AM⊥BC交BC于M,作PN⊥AM于N,过P作KP‖AC交AB于K,过K作kQ⊥AC交AC于Q,过k作KH⊥AM交AM于H,过P作PG⊥KH交kH于G,∴PE=MN(1)由PF=KQ,∠KAH=
如图,设等边三角形的边长为a,∴S△ABC=12BC•AH=12a•AH∵S△ABC=12AB•PD+12BC•PE+12AC•PF=12×a•AH=12×a•PD+12×a•PE+12×a•PF=1
∵PB+PC>BC而p是三角形内一点,∴PA
DA=DB+DC典型的取长补短题:延长BD到E,使DE=DC,连结CE,则△DCE是等边三角形再证明△BCE≌△ADC即可得结论也可以在AD上截取DE=DC,得△DCE是等边三角形,再证明△BDC≌△
--|||||||||||||||⊙﹏⊙b汗1:可以吧△ABC的面积先算出来=根号3因为S△ABC=S△ABP+S△BCP+S△ACP=1/2*AB*PD+1/2*BC*PF+1/2*AC*PE因为等
连接PA,PB,PB则S三角形ABC=S三角形ABP+三角形ACP+三角形BCP1/2*AB*h=1/2*AB*PF+1/2AC*PE+1/2BC*PD因为AB=AC=BC所以PF+PE+PD=h
以A点为轴心,把三角形ACP顺时针旋转60度.C点就与B点重合,P点到了P1点.AP1=AP=3,BP1=CP=4,角P1AP=60度.角APC=角AP1B连接P1P.可以知道三角形AP1P是正三角形
延长BD交AC于M 因为AB+AM>BE BM=BD+DM &nbs