怎么证明等边三角形内任意一点到三点的距离和小于2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:53:16
怎么证明等边三角形内任意一点到三点的距离和小于2
设P是等边三角形ABC内的任意一点,试说明:PA

因为PA〈AB即PA〈BC又PB+PC〉BC(三角形两边之和大于第三边)所以PA〈BC〈PB+PC即PA〈PB+PC

p是等边三角形abc内的一点,若P到三边的距离相等,则PA=PB=PC,证明.

证明:因为P到三边的距离相等所以P是△ABC的角平分线的交点∵△ABC是等边三角形∴P是△ABC的三条垂直平分线的交点∴PA=PB=PC

等边三角形内有任意一点M,MA=3,MB=4,MC=5,求这个等边三角形ABC的面积?

这个问题应该利用的是旋转的数学思想哦~我的答案可能不是最佳的,但是希望能给你一点启发.将三角形ABM绕点A逆时针旋转60度使边AB与AC重合.连接MM'得三角形MM’C为直角三角形(3,4,5

已知等边三角形边长为1,求证三角形内任意一点到三顶点距离之和小于2?

证明:设三角形内任意一点为P,过P点作BC边的平行线EF,分别交AB、AC于E、F.∵ΔABC为等边三角形,∴∠AFE=∠ABC=60°,又∵∠APE>∠AFE,∴∠APE>60°.在ΔAEP中,∵∠

等边三角形ABC的边长为A,三角形内任意一点O,作OD垂直AB OF垂直AC OE垂直BC证明AD+BE+CF=3/2a

过O点分别作等边三角形三条边的平行线得到条件三角形OMN,OPQ,OST均为等边三角形.(自己草稿上画画)AD+BE+CF=AS+SD+BM+ME+CP+PF=(BM+MN+NC)+(SD+ME+PF

怎么证明任意三角形三条高相交于一点?

过三角形的三个顶点作对边的平行线,得△A'B'C',则A.B.C分别是三角形A‘B’C‘三边的中点,易知△ABC的三条高恰好垂直平分△A'B'C'的三边

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

三角形ABC是等边三角形,P是三角形内任意一点,连接PA,PB,PC证明以这三边为边必能组成三角形

证明:首先按照题意画出图.然后以C点为轴将三角形APC旋转至AC与BC重合,此时A点与B点重合,P点到达的新位置设为D点.连接DP.由于角DCP为60度且CD=CP,所以三角形DCP为正三角形,所以D

三角形ABC内任意一点P证明PA+PB+PC

错题一个,除非B是最小角,否则不一定成立.

如图,在等边三角形abc中,p为三角形abc内任意一点,pd垂直bc于d,pe垂直ac于d.证明:AM=PD+PE+PF

用面积法证明,连结PA,PB,PC∵S△PBC+S△PAC+S△PAB=S△ABC即1/2PD*BC+1/2PE*AC+1/2PF*AB=1/2AM*BC又∵AB=AC=BC∴PD+PE+PF=AM

如图 一直等边三角形ABC内任意一点P到各边的距离分别为R1 R2 R3 等边三角形ABC的高位H试证明ri+r2+r3

过A作AM⊥BC交BC于M,作PN⊥AM于N,过P作KP‖AC交AB于K,过K作kQ⊥AC交AC于Q,过k作KH⊥AM交AM于H,过P作PG⊥KH交kH于G,∴PE=MN(1)由PF=KQ,∠KAH=

求证:等边三角形内任意一点到三角形三边的距离之和等于其中一边上的高.

如图,设等边三角形的边长为a,∴S△ABC=12BC•AH=12a•AH∵S△ABC=12AB•PD+12BC•PE+12AC•PF=12×a•AH=12×a•PD+12×a•PE+12×a•PF=1

设点P是等边三角形ABC内任意一点,证明PA<PB+PC

∵PB+PC>BC而p是三角形内一点,∴PA

如图,等边三角形ABC内接于圆O,D是劣弧BC上任意一点,试探究BD、DC、AD之间的数量关系,并给出证明.

DA=DB+DC典型的取长补短题:延长BD到E,使DE=DC,连结CE,则△DCE是等边三角形再证明△BCE≌△ADC即可得结论也可以在AD上截取DE=DC,得△DCE是等边三角形,再证明△BDC≌△

证明2和一元二次方程1.点p为等边三角形ABC内任意一点,PD垂直于AB于点D,PE垂直于点E,PF垂直BC于点F,且A

--|||||||||||||||⊙﹏⊙b汗1:可以吧△ABC的面积先算出来=根号3因为S△ABC=S△ABP+S△BCP+S△ACP=1/2*AB*PD+1/2*BC*PF+1/2*AC*PE因为等

设等边三角形ABC一边上的高为h,P是等边三角形ABC内任意一点,PE垂直于AC于E,

连接PA,PB,PB则S三角形ABC=S三角形ABP+三角形ACP+三角形BCP1/2*AB*h=1/2*AB*PF+1/2AC*PE+1/2BC*PD因为AB=AC=BC所以PF+PE+PD=h

p是等边三角形abc内的任意一点,pa=3,pb=5.pc=4,求角APC

以A点为轴心,把三角形ACP顺时针旋转60度.C点就与B点重合,P点到了P1点.AP1=AP=3,BP1=CP=4,角P1AP=60度.角APC=角AP1B连接P1P.可以知道三角形AP1P是正三角形

怎么证明 任意三角形ABC中,点D是三角形内任意一点,求证AB+AC大于BD+CD?

延长BD交AC于M   因为AB+AM>BE       BM=BD+DM &nbs