怎样证明lim(1 sinx x) (1-sinx x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:31:43
首先,先证明:当0
题目没写清楚:n到底趋近于哪个数再问:n趋近于无穷大再答:用定义证明啊,很简单的:那个符号打不出来:deta定义当n趋近于无穷大时|(-1/6)n-0|N时,存在一个任意小的正数,n=1/(6a),|
你好,请参见这个证明,几乎一摸一样.过程很复杂,打出来很费劲.http://wenku.baidu.com/link?url=Fhkr-yxP1pbSCQWKz3-1oo1RS6SKnwGJH3ERS
令t=arctanx,则x=tantlim(arctanx)/x=limt/tant=limt·cost/sint=1
因为lnx在点x=1处连续,所以limlnx=0(当x趋于1)=ln1=0再问:还没有学到连续只是最基本的再答:任给正数ε,要使│lnx│
解(l)给增量:sin(X+△x)=sinxcos△x+cosxsin△x⑵求比值: ⑶取极限:
lnn=nln(n^(1/n))=nln(1+n^(1/n)-1)=n{(n^(1/n)-1)-1/2(n^(1/n)-1)^2+...}lnn的主部为n(n^(1/n)-1),所以上述极限成立.
∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n
极限定义:存在自然数N,对于任意的ε(不管多小,一般认为是无穷小,但确定后不变),对于任意的n>N,有a[n]小于这个无穷小量ε也就是不管多么小的一个ε,数列减去一个常数总在某项后接近它,那数列极限就
这题很经典.首先证明它是单调的,然后用夹逼准则.我是手机上网,只能帮这么多!具体参看同济大学数学一第四版教材.
这个等式的成立需要2个条件:An不等于0,a不等于0.证明:因为limAn=a,所以对于|a|/2>0,存在自然数N1,使当n>N1时,有|An-a|=|a|-|a-An|>a/2,|(1/An)-(
注意lim1/n=0则lim(3n+1)/(2n+1)=lim(3+1/n)/(2+1/n)=(3+lim1/n)/(2+lim1/n)=(3+0)/(2+0)=3/2
limx-sinx/x+sinx=lim(x/x+sinx)-lim(sinx/x+sinx)对lim(x/x+sinx)上下同时除x得:lim[1/(1+sinx/x)]当x→0时,sinx/x=1
lim(x→0)cosx=cos0=1如果不懂,祝学习愉快!再问:再问:怎么证明?再答:证明:对任意的ε>0,解不等式|cosx-1|=|2sin²(x/2)|=2|sin(x/2)|
对于任意的ε,因为(n)^1/n>1,令(n)^1/n=1+b,则n=〖(1+b)〗^n=1+nb+[n(n-1)/2]b^2+…(二项式展开)所以当n>3时,n>1+[n(n-1)/2]b^2,从而
因为sinx再问:你好,谢谢你的答案。我想再问下,这里是不是因为tanx的极限值为无穷所以,不可得到当x趋近于0时,sinx为1呢?感谢~再答:当x趋近为0时,sinx=0,cosx=1
1/n极限是0那么对于任意1>a>0都存在N当n>N>1时1/n
∵y=sinxx∴y'=x(sinx)′−x′sinxx2=xcosx−sinxx2故答案为:xcosx−sinxx2