an*n! n^n敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:31:21
mile意思是英里.1mile=5280英尺=63360英寸=1609.344米所以nmile=1609.344×n(m)10nmile=16093.44m
M=1+2+3+…+n=[n(n+1)]/2N=1²+2²+3²+…+n²=[n(n+1)(2n+1)]/6P=1³+2³+3³+
(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1. &nbs
求数列{an}前n项的和,常用的方法就是裂项相消法.因为an=n(n+1)=n(n+1)[(n+2)-(n-1)]/3=[n(n+1)(n+2)-(n-1)n(n+1)]/3=(1/3)[-(n-1)
不知道你的题目是不是这样
An=1/(n+1)+1/(n+2)+…+1/(2n-1)+1/(2n)则An+1=1/(n+2)+1/(n+3)+…+1/(2n-1)+1/(2n)+1/(2n+1)+1/(2n+2)则An+1-A
(N+1)是下标么?5对什么,看不太懂
a_(n+1)=(1+1/(n+1))^(n+1)=(1/n+1/n+...+1/n+1/(n+1))^(n+1)>[(n+1)(1/((n^n*(n+1)))开(n+1)次方根]^(n+1)(均值不
1.a(n+1)=2an-a(n-1)a(n+1)-an=an-a(n-1)an为以1/4为首项,1/2为公差的等差数列an=n/2-1/4bn-an=bn-n/2+1/4b(n+1)-a(n+1)=
C(k,n)ak=n!/((n-k)!*k!)*(k(k+1))/2=(n-1)!/((n-k)!(k-1)!)*(n(k+1))/2=C(k-1,n-1)*n/2*(k+1)An=n/2*[C(0,
(1)令n=1a1=S1=32-1+1=32Sn=32n-n²+1Sn-1=32(n-1)-(n-1)²+1an=Sn-Sn-1=32n-n²+1-32(n-1)+(n-
(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=
limit{n->∞}(n^(n+1/n))/((n+1/n)^n)=limit{n->∞}[n/(n+1/n)]^n*n*(1/n)=limit{n->∞}[1/(1+1/n^2)]^n*limit
比值法: 发散我发现网上已经有很多回答了http://iask.sina.com.cn/b/14827620.htmlhttp://learning.wenda.sogou.com/ques
对于这个级数,首先观察进行初步估计;可以尝试采用夹逼准则,发现没有办法计算.我们发现用an+1/an可以消去很多项,使得计算成为可能.那我们便作商,进行比值判别法.an+1/an=3[n/(n+1)]
(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?
【方法1:强行展开a(n)表达式】1+2+……+n=n(n+1)/21^2+2^2+……+n^2=n(n+1)(2n+1)/61^3+2^3+……+n^3=n^2(n+1)^2/41^4+2^4+……
2a(n+1)-an=n-2/n(n+1)(n+2)2a(n+1)-2/(n+1)(n+2)=an-1/n(n+1)[a(n+1)-1/(n+1)(n+2)]/[an-1/n(n+1)]=1/2bn=
令a(n)=(n^n)/(n!)^2,则a(n+1)=[(n+1)^(n+1)]/[(n+1)!]^2;lim(n→+∞)a(n+1)/a(n)=lim(n→+∞){(n+1)(n+1)...(n+1
(1)∵an+1+an=3n−54an+2+an+1=3n−51,两式相减得an+2-an=3,∴a1,a3,a5,…,与a2,a4,a6,…都是d=3的等差数列∵a1=-20∴a2=-31,①当n为