an*n! n^n敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:31:21
an*n! n^n敛散性
n

mile意思是英里.1mile=5280英尺=63360英寸=1609.344米所以nmile=1609.344×n(m)10nmile=16093.44m

求数列an=n(n+1)(2n+1)的前n项和.

M=1+2+3+…+n=[n(n+1)]/2N=1²+2²+3²+…+n²=[n(n+1)(2n+1)]/6P=1³+2³+3³+

已知数列{an}满足an+1=2an+n+1(n∈N*).

(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1.  &nbs

求数列an=n(n+1) 的前n项和 到 an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂

求数列{an}前n项的和,常用的方法就是裂项相消法.因为an=n(n+1)=n(n+1)[(n+2)-(n-1)]/3=[n(n+1)(n+2)-(n-1)n(n+1)]/3=(1/3)[-(n-1)

An={n (1

不知道你的题目是不是这样

An=1/(n+1)+1/(n+2)+.+1/2n,则An+1-An等于?

An=1/(n+1)+1/(n+2)+…+1/(2n-1)+1/(2n)则An+1=1/(n+2)+1/(n+3)+…+1/(2n-1)+1/(2n)+1/(2n+1)+1/(2n+2)则An+1-A

若数列an=(1+1/n)^n,求证an

a_(n+1)=(1+1/(n+1))^(n+1)=(1/n+1/n+...+1/n+1/(n+1))^(n+1)>[(n+1)(1/((n^n*(n+1)))开(n+1)次方根]^(n+1)(均值不

a(n+1)=2an-a(n-1) 3bn-b(n-1)=n

1.a(n+1)=2an-a(n-1)a(n+1)-an=an-a(n-1)an为以1/4为首项,1/2为公差的等差数列an=n/2-1/4bn-an=bn-n/2+1/4b(n+1)-a(n+1)=

An=C(1,n)a1+C(2,n)a2+…C(n,n)an,

C(k,n)ak=n!/((n-k)!*k!)*(k(k+1))/2=(n-1)!/((n-k)!(k-1)!)*(n(k+1))/2=C(k-1,n-1)*n/2*(k+1)An=n/2*[C(0,

已知数列An的前n项和Sn=32n-n*n+1

(1)令n=1a1=S1=32-1+1=32Sn=32n-n²+1Sn-1=32(n-1)-(n-1)²+1an=Sn-Sn-1=32n-n²+1-32(n-1)+(n-

在数列{An}中,已知An+A(n+1)=2n (n∈N*)

(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=

级数(n^(n+1/n))/((n+1/n)^n)的敛散性的怎么判断

limit{n->∞}(n^(n+1/n))/((n+1/n)^n)=limit{n->∞}[n/(n+1/n)]^n*n*(1/n)=limit{n->∞}[1/(1+1/n^2)]^n*limit

判断级数(e^n)*(n!)/(n^n)的敛散性

比值法: 发散我发现网上已经有很多回答了http://iask.sina.com.cn/b/14827620.htmlhttp://learning.wenda.sogou.com/ques

判断级数 3^n*n!/n^n 的敛散性

对于这个级数,首先观察进行初步估计;可以尝试采用夹逼准则,发现没有办法计算.我们发现用an+1/an可以消去很多项,使得计算成为可能.那我们便作商,进行比值判别法.an+1/an=3[n/(n+1)]

判断级数敛散性∑(n=1到∞)(n+1/n)/(n+1/n)^n

(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?

已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn

【方法1:强行展开a(n)表达式】1+2+……+n=n(n+1)/21^2+2^2+……+n^2=n(n+1)(2n+1)/61^3+2^3+……+n^3=n^2(n+1)^2/41^4+2^4+……

已知数列an中,a1=1 2a(n+1)-an=n-2/n(n+1)(n+2) 若bn=an-1/n(n+1)

2a(n+1)-an=n-2/n(n+1)(n+2)2a(n+1)-2/(n+1)(n+2)=an-1/n(n+1)[a(n+1)-1/(n+1)(n+2)]/[an-1/n(n+1)]=1/2bn=

判别级数敛散性 (n^n)/(n!)^2

令a(n)=(n^n)/(n!)^2,则a(n+1)=[(n+1)^(n+1)]/[(n+1)!]^2;lim(n→+∞)a(n+1)/a(n)=lim(n→+∞){(n+1)(n+1)...(n+1

数列{an}中,an+1+an=3n-54(n∈N*).

(1)∵an+1+an=3n−54an+2+an+1=3n−51,两式相减得an+2-an=3,∴a1,a3,a5,…,与a2,a4,a6,…都是d=3的等差数列∵a1=-20∴a2=-31,①当n为