an2 bn2收敛 则下列级数也收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:33:59
分别是条,条,绝.
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
错的.级数收敛分为两种,条件收敛与绝对收敛.一个收敛的级数,若它的绝对值级数也收敛,则我们称之为绝对收敛的级数,否则,我们称之为条件收敛的级数.所以绝对收敛只是收敛的子集.例:考虑级数(Sigma)n
an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默
因为|coskz/k²|≤1/k²而Σ1/k²收敛所以原级数绝对收敛,即对任何实数都收敛所以收敛域为一切实数.
极限绝对值的那个东西除以n分之一为无穷大,下面发散所以上面发散.然后用莱布尼兹可求原级数收敛,故为条件收敛
级数n/(n^2+1)为发散级数f(x)=x/(x^2+1)f'(x)=(1-x^2)/(1+x^2),当x>1时,f'(x)再问:这样证明了原(-1)^n+1次方乘n/(n^2+1)是收敛,那n/(
等比级数求和,是收敛的.经济数学团队帮你解答.请及时评价.
因为\cosna/n³\≤\1/n³\因为Σ1/n³收敛所以Σ\cosna/n³\收敛从而原级数绝对收敛.
不收敛,不妨假设收敛,然后反证即可
一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.
再问:sin(x/n)>sin(x/n+1)是为什么?再答:(x/n)
讲个大概.ΣUn收敛,则由收敛必要性得通项Un趋于0(当n趋于无穷时).所以从某一项开始Un
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
2.|An|≤1/n^2级数1/n^2收敛,原级数绝对收敛3.|A(n+1)/An|=2/(1+1/n)^n趋于2/e
没有错啊,只能选C
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^