an2和bn2收敛证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:34:19
a(n+1)=[an/(1+an)]^(1/2)|an|>0{an}递减=>lim(n->∞)anexistslim(n->∞)a(n+1)=lim(n->∞)[an/(1+an)]^(1/2)L=(
级数的一致收敛用魏尔斯特拉斯判别法证明.级数的绝对收敛即判断级数每项加绝对值号形成的正项级数的敛散性,可根据比较判别法,比值判别法,根值判别法等进行证明.
1、设∑|Xn|,∑|Yn|收敛,由于||Xn|+|Yn||=|Xn|+|Yn|,左右两边均为正项级数,则∑||Xn|+|Yn||=∑|Xn|+∑|Yn|,因此∑||Xn|+|Yn||收敛2、设∑|X
证明:n=1时,a1=S1=a+bn>=2时:an=Sn-S(n-1)=an^2+bn-[a(n-1)^2+b(n-1)]=2an-a+ba1=a+b也符合.所以,d=an-a(n-1)=2an-a+
Sn=-1+1-1+...+(-1)^n易知,当n是奇数时,Sn=1;当n是偶数时,Sn=0.于是,对于任何常数A,有|Sn-A|=|A|或|1-A|很明显,|A|和|1-A|的值总有一个不小于1/2
an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默
因为n!
打字没法儿排版,看图片吧!因为有下标,会显示较小,建议点击放大!【经济数学团队为你解答!】再问:谢谢您再答:如果满意,请采纳,谢谢!
单调性用作差开证明,很明显是单增的,所以要找上界,上界可以适当放缩来找,把分母变小就可以,把分母里头的123…去掉,写成公比二分之一的等比数列求和,写出来很容易的看出上界是1,单调有界数列必收敛得证.
交错项级数判断敛散性,用莱布尼兹判别法:令1/√n=x显然e^x-1-x求导后可以看出它是根据x的增大而增大,由于同增异减,当n增大时,x减小,故里面也在减小,且极限为0满足莱布尼兹定理,所以原级数收
把调和级数看成一个数列,数列通项是调和级数前n项和数列收敛的充要条件是:柯西判别法(什么名字记不清楚了)对于调和级数的这个数列,满足∀ε>0,存在n>0,∀m>n,有1/n+1
因为Un=n/[(n^2+n+1)(n^2-n+1)]是正项级数而且limUn/[1/n^3]=1所以Un与1/n^3有相同的敛散性,所以级数收敛再问:这位同学你梦游天姥山了吧说的都是啥呀再答:收敛值
是求这个级数的敛散性和求它的和吗?题意不明啊
楼上说有问题.数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|
这是错的.比如Un=1/n
先看调和级数:证明如下:由于ln(1+1/n)<1/n (n=1,2,3,…) 于是调和级数的前n项部分和满足 Sn=1+1/2+1/3+…+1/n>ln(1
(1)6a1=a1^2+3a1+2解得a1=1或2(2)6sn=an^2+3an+26s(n-1)=a(n-1)^2+3a(n-1)+2两式想减得6an=an^2-a(n-1)^2+3an-3a(n-
利用收敛数列必有界.那么有界集合,必有上确界和下确界.收敛数列必有界的证明证明:若an→a,那么有对所有的e>0,存在自然数N,当n>N,时|an-a|N时a-e