总体X~N(u,a²),有样本X1.X2...,设Y=1 2(Xn-X1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:23:43
哎呀,这是考验真题,你没答案么?我记得是零几年的考研数一原题,你去找找答案吧?我这给你打也太麻烦点了再问:�ܸ��ҽ���˼·ô��ʲôһ��һ��再答:�Ҽǵ��кü��ַ��������õ����
对于θ,如果E(θ^)=θ,则θ^为θ的无偏估计.而样本均值可以认为是总体均值的无偏估计,即E(Xˉ)=E(X)=μ而样本方差可以认为是总体方差的无偏估计,即E(S^2)=D(X)=σ^2所以这个题就
这个用卡方分布算,n次卡方差是知道的,就可以求出来了,其实你也可以直接算,将其展开,用最原始的方法算,E(X^2)-E(x)^2,算,这题我做08年试卷,就是硬算的,可以做的,但是做的时候要小心查看原
再问:请问Var是什么啊?再答:方差呀
选DX拔=0,所以A、B错C由单正态总体的抽样分布定理得X拔/(S/根号n)~t(n-1),C错D中把n-1移到分母里面,得到分子是自由度为1的卡方分布,分母是自由度为n-1的卡方分布,满足F分布的定
选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
对任意i,显然都有E(Xi)=θ/2,故E(θ1)=2E(X0)=2/n∑E(Xi)=2*θ/2=θ令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
X1,X2.Xn来自总体为N(0,σ^2)=>∑xi~N(0,nσ^2)=>∑xi/√(nσ^2)~N(0,1)=>[∑xi/√(nσ^2)]^2~x^2(1)=>C=nσ^2
正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)
设X服从标准正态分布,其分布函数为Φ(x),由于要:其密度函数是偶函数,故有:Φ(-a)=1-Φ(a).故a>=0时有:则P{|X|
(1)如果对任意的n,有Xn+1=Xn+2计算X2=(5)X3=(7)X4=(9)①根据上面一小题的结果,请试着把Xn用n表示出来:Xn=(2n+1)②计算X2004=(2009)(2)如果对任意的n
第一个标准正太第二个t(n-1)
再问:啊在书上看到了概念不好意思==三克油么么哒ww
s^2是修正样本方差,那么17*s^2/σ^2符合卡方(17)分布,p(s^2/a^217*1.2052)=1-p(17*s^2/σ^2>20.4884),查表,=1-X^2(17),上分位点α=0.
X:自由度n=3,标准化Xi即Xi=Xi/σ,χ2(3)=(X1^2+X2^2+X3^2)/σ^2Y:因为已知均值,故自由度n=4-1=3,同理χ2(3)=((Y1-A)^2+(Y2-A)^2+(Y3
已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b