总体X服从[2,5]的均匀分部,求D(x的均值)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:52:57
总体X服从[2,5]的均匀分部,求D(x的均值)
设X1X2X3X4是取自总体X~N(0,o^2)DE的样本,则统计量y=(x1+x2)^2/(x3-x4)^2服从自由度

若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服

概率论大数定理设总体X服从参数为2的泊松分布、X1,X2`````Xn为来自总体X的一个样本,则当n→∞,Yn=1/n(

Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服

)设X服从N(0,1),(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本,Y=(X1+X2+X3+)^2

(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Y

大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i

设总体X服从参数为λ的泊松分布,X1.Xn是X的简单随机样本.求证:1/2(x的平均

求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有

X服从自由度为3的卡方分布 ,从总体中抽取n个样本,为什么 X1+X2+X3服从自由度为9的卡方分布

是这样子的,X服从于自由度为3的卡方分布,则有X=x1^2+x2^2+x3^2从X里抽出三个样本,则X1,X2,X3都有上面X=·····的表达式.根据卡分分布的可加性,3*3=9.则有,X1+X2+

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

设总体X~N(0,σ^2),X1、X2为X的样本,求证(X1+X2)^2/(X1-X2)^2服从分布F(1,1)

N(0,σ^2)E(X1+X2)=EX1+EX2=0D(X1+X2)=DX1+DX2=2σ^2X1+X2~N(0,2σ^2)同理:X1-X2~N(0,2σ^2)所以1/√2σ(X1+X2)~N(0,1

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

假设总体分部为N(12,2的平方),今从中抽取样本X1,X2,X3,X4,X5,

把10和15分别代入Φ[(x-12)/2],查正态分布表Φ(-1)和Φ(1.5),假设分别为P1和P2(我这里没表).则一个数小于10的概率是P1;一个数大于15的概率是1-P2(1)假设5个数都大于

设总体X,Y均服从N(0,σ2),(X1,X2,X3)和(Y1…Y4)分别来自总体X,Y的样本,A为(Y1…Y4)的样本

X:自由度n=3,标准化Xi即Xi=Xi/σ,χ2(3)=(X1^2+X2^2+X3^2)/σ^2Y:因为已知均值,故自由度n=4-1=3,同理χ2(3)=((Y1-A)^2+(Y2-A)^2+(Y3