总体x服从均值为θ的指数分布 其密度函数 证 为θ的无偏估计量 并比较哪个更有效
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:27:06
X和Y相互独立-->f(x,y)=f(x)*f(y)=(1/2)e^(-x/2)*(1/4)e^(-y/4)p(X>Y)=∫∫f(x,y)dxdy(积分区域为y=0,y=x所围面积)=∫(0-->∞)
写得不是很规范,大概思路是这样.再问:原来是我算错了,没用1减概率==感谢
这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1
xi独立同分布F1x=MAX(x1,x2,.)=(f(x,λ))^n,然后根据期望的定义求相应的积分就是了,但是要注意指数分布当x《0时f=0
对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数
参数为1,就是λ为1
本均值的方差=D(X)/10=1.2
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
X~B(n,p),本题n=2,p=0.3,所以E(样本均值)=np=2×0.3=0.6.
X和Y相互独立则有fx(x)*fy(y)=f(x,y)Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2然后就可以对联合分布P(Y
不需要,谁和说总体服从正态分布时,样本方差和样本均值独立了啊?
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
样本均值的方差等于总体方差除样本数20.总体方差=参数10
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正
1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&
DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差