总体x服从均匀分布U(0,θ),求Y=max,及其期望和方差

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:27:06
总体x服从均匀分布U(0,θ),求Y=max,及其期望和方差
问一个概率论里的题目“已知总体X服从均匀分布[0,θ],求矩法估计和极大似然估计,如果是有偏,请改为无偏”两个估计都会求

见图再问:你好,你的答案前面和后面我都仔细看懂了,X(n)的概率密度为什么是nX(n-1)/θ(n)?真诚期待你的答案。再答:你看看教材吧。最大次序统计量的概率密度如何求,教材上明明白白地写着啊。在独

设x服从正态分布,Y服从均匀分布u(-h,h),x,y相互独立,求z=x+y的概率密度函数

FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z

设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望

具体过程如图,点击可放大:再问:谢谢您!好棒的!希望以后还可以请教您问题!再问:请问你可以帮我解答这个问题吗?再问:

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

二维随机变量X,Y服从(0,1)均匀分布,求Z=MAX(X,Y)

F(X)=(X-0)/(1-0)=x/1=xF(Y)=(Y-0)/(1-0)=y/1=y以上是两个均匀分布的分布函数F(Z)=F(MAX(X,Y))=1-(1-F(X))(1-F(Y))=1-(1-X

设随机变量U服从(-2,2)上的均匀分布,试求:(1)Z=X+Y的分布律

答: 设X,Y相互独立,且服从同分布X~U(-2,2),Y~U(-2,2), 则X,Y的概率密度为(y只需换成x) f(x): ①:1/4,-2<x<

X与Y相互独立,且服从[0,1]上的均匀分布,为什么就能得到X+Y是U[0,2]?

Z=X+Y服从三角形分布,密度函数:最高点在(1,1)最低点(0,0)(2,0)可以这样想:在正方形中画斜线,135°,观察斜线长度.(在正方形内的部分)

设(X,Y)服从下列区域D上的均匀分布,其中D:x>=y,0

可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0

一道概率论题目设总体X服从(0,θ)上的均匀分布,从X中抽取容量为1的样本X1,则θ的无偏估计量是()A.U=X1,B.

注意EX1=EX=(0+θ)/2=θ/2(均匀分布的数字特征),所以有E(2X1)=θ,故选B

变量X1,X2,..,Xn互相独立且都服从(0,1)上的均匀分布,求U=max{X1,X2,..,Xn}和V=min{X

所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量X,Y服从均匀分布(0,3)求E[min(X,Y)]

记Z=min(X,Y)],X分布函数F1(x),Y分布函数F2(y),F1=F2Z分布函数F(z)=P[Zz]=1-P[min(X,Y)>z]=1=P[X>z,Y>z]=1-P(X>z)P(Y>z)=

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

请问随机变量x服从均匀分布U(-1,3)如何计算x均值方差为 1和1.33

由于是均匀分布,而定义域取值为(-1,3),故p=1/4,其中p为概率密度函数则有如图所示,其中E(x)是均值,D(x)是方差.这都是概率里的基础知识,公式就是定义,代入即可.