总体服从泊松分布,P(X=2)的矩估计是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:09:33
泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^
引用回答者:aquex-经理五级4-1823:12P(X=K)=lamda^k/k!*e^(-lamda)那么e^(-lamda)是定值P(X=K+1)/P(X=K)=lamda/K+1只要看这个比不
p(x=0)=0.4=e^(-λ)λ=-ln0.4p(x=1)=-0.4ln0.4p(x=2)=0.4ln²0.4p(x>2)=1-P(x=0)-P(x=1)-P(x=2)=1-0.4(ln
x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道
你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.
首先E(X-1)(X-2)=E(X^2-3X+2)=1.因为DX=EX=Y.解出来Y=1.带入到泊松分布中,因为泊松分布是从0开始到正无穷.所以P{X>=1}=1-e
F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X
P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=
P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取
求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有
有些符号不会打.但有这样的结论:泊松分布的数学期望与方差相等,都等于参数λ.因为泊松分布只含有一个参数,只要知道它的数学期望或者方差就能完全确定它的分布
随机变量X服从泊松分布,且P(X=1)=P(X=2),所以:P(X=i)=e−λλii!即:e−λλ=e−λλ22!得:λ=2P(X=4)=23e−2
由于随机变量X服从参数为1的泊松分布,所以:E(X)=D(X)=1又因为:DX=EX2-(EX)2,所以:EX2=2,X 服从参数为1的泊松分布,所以:P{X=2}=12e−1,故答案为:1
P(X=2)=[9e^(-3)]/2
随机变量X服从参数为λ的泊松分布P{X=k}=e^(-λ)*λ^k/k!P{X=1}=e^(-λ)*λ^1/1!P{X=2}=e^(-λ)*λ^2/2!若P{X=1}=P{X=2}λ=2E(x)=D(
我来解!首先你要搞清楚s^2是个什么东西!第二你要搞清楚方差的概念!s^2就是方差!定义就是2阶中心距!2阶中心距=E(x-E(x)^2)=∑xE(x-E(x)^2)那么也就等与D(x)换句话说就是求