想一想y=sin(x-3π 2)和y=cosx的图像,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:07:57
想一想y=sin(x-3π 2)和y=cosx的图像,
求函数y=2sin(2x+π3

函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+

求函数y=sin(2x+π3

∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π

已知函数y=2sin(2x+π/3)

振幅为2;周期为π;初相为π/3单增区间:kπ-5π/12≦x≦kπ+π/12对称轴:x=﹙1/2﹚kπ+(1/12)π

正弦型函数 y=sin(π/3-2x)

你把括号里的看成一个整体记作t.这样自变量是t,就是y=sint的简单正弦函数,不同的t对应求出不同的x即可

求导数 y=sin^2(2x+π/3)

y=(1/2)[1-cos(4x+2π/3)]y'=2*sin(4x+2π/3)

函数y=sin(2x+π/3)的图像

x=-π/6时,y=0所以,关于点(-π/6,0)对称选B

1.y=x*e^(2x) 2.y=(sin(2x))/x 3.y=sin(3x+(π/3))怎么求导数!

1.y'=e^(2x)+2xe^(2x)=(1+2x)e^(2x)2.y'=[2xcos2x-sin2x]/x^23.y'=3cos(3x+π/3)

已知函数y=-2sin(3x+π/3)

我列个去,就算我高中毕业到现在已经8年了,我也看的出来1楼的乱说的撒,值域明显是[-2,2]嘛

函数y=2sin(2x+π3)

∵-π6<x<π6,∴0<2x+π3<2π3,根据正弦函数的性质,则0<sin(2x+π3)≤1,∴0<2sin(2x+π3)≤2∴函数y=2sin(2x+π3) (-π6<x<π6)的值域

y=2sin(1\2x-π\3)+1

y=2sin[(1/2)x-π/3]+1(1)最小正周期:T=2π/(1/2)=4π.(2)单调性:由2kπ-π/2≦(1/2)x-π/3≦2kπ+π/2,得2kπ-π/6≦(1/2)x≦2kπ+5π

函数y=3sin(2x-π3

∵π3≤x≤3π4∴π3≤2x−3π4≤7π6,根据正弦函数图象则−12≤sin(2x−π3) ≤1,故答案为[−32,3].

y =(cos^2) x - sin (3^x),求y'

y'=(cos²x)'-(sin3^x)'=2cosx·(cosx)'-cos3^x·(3^x)'=2cosx·(-sinx)-cos3^x·(3^x·ln3)=-sin2x-ln3·cos

函数y=3sin(2x+π4

∵函数表达式为y=3sin(2x+π4),∴ω=2,可得最小正周期T=|2πω|=|2π2|=π故答案为:π

证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+

sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/

y=sin(x+π/3)+2定义域怎么求?

y∈[1,3]当y=1时,sin(x+π/3)=-1,x+π/3=2kπ-π/2,x=kπ-5π/12,k∈Z当y=3时,sin(x+π/3)=1,x+π/3=2kπ+π/2,x=kπ+π/12,k∈

判断y=sin(2x+3π/2)奇偶性

答:y=sin(2x+3兀/2)y=sin(2x+2兀-1/2*兀)y=sin(2x-兀/2)y=-sin(兀/2-2x)y=-cos(2x)y=-(cosx)^2+(sinx)^2所以f(-x)=-

函数y=2sin(3x+π4

令2kπ+π2≤3x+π4≤2kπ+3π2,k∈z,求得2kπ3+π12≤x≤2kπ3+7π36,故函数的减区间为[2kπ3+π12,2kπ3+7π36],k∈Z,故答案为:[2kπ3+π12,2kπ

函数y=sin(x+π3

由题意x∈[0,π2],得x+π3∈[π3,5π6],∴sin(x+π3)∈[12,1]∴函数y=sin(x+π3)在区间[0,π2]的最小值为12故答案为12

化简y=sin^2(x)+2sin(x)cos(x)+3cos^2(x)

y=sin²x+2sinxcosx+3cos²xy=(sin²x+cos²x)+2sinxcosx+(2cos²x-1)+1=1+sin2x+cos2