an的2013次方绝对收敛,证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:36:44
an的2013次方绝对收敛,证明
为何绝对收敛?

stirling公式n!≈√(2πn)×n^n×e^(-n)显而易见是绝对收敛再问:这咋出来的?解释一下,如果是公式是说明一下再答:斯特林公式我忘咋证的了

级数的一致收敛和绝对收敛怎么证明

级数的一致收敛用魏尔斯特拉斯判别法证明.级数的绝对收敛即判断级数每项加绝对值号形成的正项级数的敛散性,可根据比较判别法,比值判别法,根值判别法等进行证明.

级数的绝对收敛与条件收敛的一道题

首先考虑a=[In(n^2+1)]/n^tt>0则lima=lim[2n/(n^2+1)*t*n^(t-1)](洛比达法则)=lim[2n^2/t*(n^2+1)]*[1/n^t]=0考虑绝对收敛当p

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

函数项级数绝对收敛的定义是什么.若他绝对收敛是否一定一致收敛?

就是每一项都取绝对值后都收敛,若绝对收敛,必然他收敛,希望对你有所帮助!

>>>>关于条件收敛和绝对收敛的问题

两个绝对收敛级数之和必绝对收敛,设{an}和{bn}绝对收敛,则{an+bn}也绝对收敛,因为│an+bn│≤│an│+│bn│,由比较审敛法,级数{an+bn}绝对收敛

判断级数的敛散性 若收敛 是条件收敛还是绝对收敛

 再问:这个用的什么方法再答:判断收敛性可以使用等价无穷小再问:不太懂再答:结合我写的步骤看啊再问:好的

判定下列级数的敛散性,如果收敛,是绝对收敛,还是条件收敛

因为\cosna/n³\≤\1/n³\因为Σ1/n³收敛所以Σ\cosna/n³\收敛从而原级数绝对收敛.

常数项级数敛散性的判别,如是收敛,是绝对收敛还是相对收敛.

首先,容易证明2^k>k对任意k≥1成立.因此2^(n²)=(2^n)^n>n^n≥n!.级数通项的绝对值2^(n²)/n!≥1,不能收敛到0.因此级数发散.

一道关于级数绝对收敛和条件收敛的题目

第二步用的是比较审敛法,和P-级数的结论再问:比较审敛法是什么再答:正项级数审敛的一种最基本的方法:形象的说:大收则小收,小散则大散

条件收敛还是绝对收敛,

一般步骤是先判断是否绝对收敛,若否,则判断是否条件收敛.再答:再答:看到你对我的提问了。。。但是抱歉呀,我们多重、多元问题都没学,所以不能帮你了😳再问:那还是这类型的问题呢?再答:那也