an跟ab的平方都收敛,证明an乘bn的绝对值收敛,(an bn)的平方也收敛.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:08:45
反证法.若{an}不以a为极限,则取ε=1,对任意的N,存在n0>N,使得|an0-a|>1,取N=1,得n1使得|an1-a|>1;取N=n1,得n2>n1,使得|an2-a|>1;.取N=nk,得
(1)liman=alim(an-a)=0∴an-a是无穷小数列必要性得证再答:(2)an-a是无穷小数列lim(an-a)=0liman=a充分性得证
这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n
用比较判别法证明.经济数学团队帮你解答.请及时评价.
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
可能是你的表达有误,按你的叙述,结论不对.举个例子,an=1/(n^2),显然∑an是收敛的.然而,(an)^n->1,所以∑(an)^n是发散的.再问:请问一下(an)^n->1an既然是一个属于(
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默
证明:显然可以发现an是有理数序列,设an=(F(n+1))/Fn=>F(n+1)=Fn+F(n-1)F(1)=F(2)=1故Fn为斐波拉契数列而斐波拉契数列lim(F(n+1))/Fn=(sqrt(
这题题目错了.既然题目里面没有说∑an的极限和∑cn的极限相等,又没有说an、bn、cn都大于零之类的条件,是不能判断收敛性的,有可能出现∑bn是震荡的而不是收敛的.
nan《M,则an《m/n,(an)^2《m^2/n^2,而级数1/n^2收敛,故由大M判别法知原级数收敛.你懂得?
根据柯西收敛准则,只需证明|a(n+p)-an|
再问:可以告诉我图片在哪找的吗?|An|-a=|An-a||An-a|=||An|-|a||不懂、、再答:Mathtype自己编辑再问:对不起,智商不够用,An小于0是什么意思?再答:我是分情况讨论,
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
设数列{an}的子列{a(kn)}(n为k的下标)收敛于a,则对任意的s>0,存在N,使得对任意m>n>N,有|a(kn)-a|N+1)时|an-a|
设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1