A×A-A 3E 求3A-E可逆,并求其逆矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:09:47
(A-3E)(A+3E)=E所以A-3E可逆,A-3E的逆矩阵是A+3E
移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A
A*A=A,A*A-A=0,A*A-A-12E=-12E(A+3E)(A-4E)=-12E,由于|(A+3E)*(A-4E)|=|A+3E|*|A-4E|=(-12)^n≠0(设A是n阶方阵),所以A
证明∶∵A+2A-4E=0,∴A+2AE-3E-E=0,∴A+2AE-3E=E,∴﹙A-E﹚﹙A+3E﹚=E,∴﹙A+3E﹚可逆,且﹙A+3E﹚﹙﹣1﹚=A-E
A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E
由特征值的定义:|A-sE|=0的s为特征值不可逆等价于行列式等于0而|A-0E|=0,|A-1E|=0,|A-(-0.5)E|=0所以特征值为0,1,-0.5
A^2+A=E所以A^2+A-2E=-E,即(A+2E)(A-E)=-E,因此-(A+2E)(A-E)=E.同理(A-E)[-(A+2E)]=E所以(A-E)可逆,逆矩阵为-(A+2E)
证A可逆A²+A-3E=0A(A+E)=3EA(A+E)/3=E所以A可逆,且A的逆矩阵为(A+E)/3证A+2E可逆A²+A-3E=0(A+2E)(A-E)=E所以A+2E可逆,
因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.
因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且
即2A(A-E)-E=A³-E2A(A-E)-E=(A-E)(A²+A+E)有(A-E)(A²-A+E)=-E有(E-A)(A²-A+E)=E所以E-A可逆,并
再答:高代好久没看了不对了见谅只会第一问再答:第一个超错了其他没问题再答:重写吧再答:再问:嗯,但题目是3E再答:
3A(A-E)=-5E,因此A可逆,A^(-1)=(E-A)/5-3(A-2E)(A+E)=11E,因此A-2E可逆,(A-2E)^(-1)=-3(A+E)/11再问:֮ǰ�����ˣ���Ǹ
证:由A2-3A-3E=0,得(A-E)(A-2E)=5E(A-E)[(A-2E)/5]=E由定义,得(A-E)可逆,且(A-E)-1=(A-2E)/5再问:再答:就是这个题目啊。再问:哦哦,谢谢
A*A-A-2E=0于是A*(A-E)=2EA*(A-E)/2=E(E-A)*(-A)/2=E则A,E-A都可逆,且A的逆矩阵是(A-E)/2,E-A的逆矩阵是-A/2
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
可以改写等式得出逆矩阵.请采纳,谢谢!
(A+E)(A平方-A-E)=-4E-4除过来根据定义来
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).