aΣ(e^-1)k=ae^-1 (1-e^-1)=a (e-1)=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:29:45
aΣ(e^-1)k=ae^-1 (1-e^-1)=a (e-1)=1
矩阵A^2=A,证明:(A+E)^k=E+(2^k-1)A (k∈N).

因为AE=EA,即A与E可交换所以由二项式公式有(A+E)^k=∑(0

设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

急】如图,直线AC交双曲线y=k/x于C(1,m)E(n,2)交x轴于点A,且CE=AE.(1)求双曲线的解析式

(1)在y=k/x中,C(1,m),E(n,2),列式{k=m,k/n=2}.在y=kx+b中,C(1,m),E(n,2),列式{k+b=m,nk+b=2}.由k=m得b=0,代入nk+b=2得,nk

已知如图正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交ED于点P若AE=AP=1,PB=根号5 则

1,全等,AB=AD,AE=AP,角EAB=DAP3,∵△APD≌△AEB,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥

如图(1),A.E.F.C.在一条直线上,AE=CF,过E,F分别作DE垂直于AC,B

≌∵∴⊥Δ∽∵AE=CF∴AF=CE又∵AB=DC且BF⊥AC,DE⊥AC,∴ΔAFB≌ΔCED∴BF=DE又∵直角ΔBFG∽直角ΔDEG∴直角ΔBFG≌直角ΔDEG∴EG=FG即BD平分EF(2)解

k方和公式是什么?a^k-b^k=(a-b)(a^(k-1)+a^(k-2)b+...+b^(k-1))那么a^k+b^

用平方差的公式可以推出来将两个式子对应相乘再用右边的答案除以1式的左边

英语翻译begin k:=100; 10:if k>i+j thenbegin k:=k-1;goto 10;end e

所谓四元式是一种表示中间代码的方式,跟三元式、波兰式、逆波兰式的目的是一样的,但四元式在表示简单赋值语句方面非常直观明了,四元式的格式:(操作符,第一操作数,第二操作数,保存结果的变量)例如:k:=k

已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,EB=

①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=PAD,又∵AE=AP,AB=AD,∴△APD≌△AEB;③∵△APD≌△AEB,∴∠APD=∠AEB,又∵∠AEB=∠AEP+

已知在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=根号5.则

如图,连接BD.∵AE=AP=1,AB=AD,∠EAD=∠PAB=90°+∠PAD∴△EAD≌△PABED=PB=√5,∠1=∠2∠AGB=∠PGD∴∠DPG=∠BAG=90°BD^2=PB^2+PD

线性代数题 若A的k次方=0(k为正整数) 证明:E-A的逆矩阵等于E+A+A的平方+.+A的K-1次方

考虑(E-A)(E+A+A^2+A^3+...+A^(K-1))=E+A+A^2+A^(k-1)-A-A^2-A^3-...-A^k=E-A^k=E(因为已知A^k=0)所以E-A的可逆矩阵为E+A+

设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)

由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立

概率题,高手帮忙做下已知X的分布律为P(X=k)=ae*-k+2(k=1,2,3...),求常数a,其中*-k+2表示在

确实答错,k=0,1,2,3,.就是那个答案了sum:P(x=k)=1i.e.ae^2+ae+ae^(0)+ae^(-1).=a*e^2/(1-e^(-1))=1a=1/e^2-1/e^3

已知AB是两个n阶矩阵,满足A=1/2(B+E)及A^2=A .是证明对任意自然数k皆有 (E-B)^k=2^(k-1)

A=1/2(B+E)代入A^2=A有(B+E)(B+E)=2(B+E)得B²=E这样(E-B)²=E-2B+B²=2(E-B)右乘(E-B)后(E-B)³=2(

设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)

证明:因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-

如果A^k=0,证明(E-A)^(-1)=E+A+A^2+.+A^(k-1).

只需证明(E-A)[E+A+A^2+.+A^(k-1)]=E,由于矩阵和单位矩阵E的乘法有可交换性,即AE=EA=A,因此乘法公式a^k-b^k=(a-b)[a^(n-1)+a^(n-2)b...+b

线性代数一个证明题设A^k=o (k为正整数),证明:(E-A)^-1=E+A+A^2+……+A^k-1

(E-A)(E+A+A^2+……+A^k-1)=E-A^k=E所以,(E-A)^-1=E+A+A^2+……+A^k(-1)再问:nwng能不能多写点呀详细一下谢谢虽然我看懂了;老师不让写这么少再答:这

一道线性代数证明题若方阵A满足A的k次方=0,其中k为某个自然数,证明E-A可逆,且(E-BA)的-1次方=E+A+A平

A^k=0,E-A^k=E,展开,(E-A)*(E+A+A平方+A立方+...+A的k-1次方)=E.得证了赛.(后面是不是你打错了,B是咋个来的?)