a为n阶可逆矩阵,A不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:47:33
A是错的AB≠OA可逆,B≠O但不一定可逆,除非是|AB|≠0B对AB=OA可逆,两边同乘A的逆,得B=O
不是k^(-n)而是K^(-1)再问:|kA|=k^nA没问题吧再答:右边的A是|A|
A,B可逆吗?如果B可逆,我能证明BCB^(-1)是I-BA的逆阵反例:A=(10)(10)B=(0.50.5)(00)则可证明I-AB可逆,而I-BA不可逆
考察矩阵A的行列式,由于的各行元素之和均为a,故将a的行列式的第二至第n列都加到第一列,则第一列都变为a,如果a=0则|A|=0,与矩阵A可逆矛盾,所以a不等于0.
行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|
若A不可逆,那么AX=0就有非零解也就是AX=0*X了,这说明0是A的特征值,矛盾!
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
因为A的每行的元素的和是常量a所以A(1,1,...,1)^T=a(1,1,...,1)^T即a是A特征值而A的所有特征值的乘积等于|A|,由A可逆,|A|≠0所以a≠0.A^-1的特征值是1/a,对
原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A
核心:线性!第一章知识链线性代数核心就这么一点内容(考研的主要部分,不是全部喔!)线性方程组--->行列式--->矩阵--->向量--->向量
A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法
不一定,E+(-E)=O.再问:哈,谢谢!
单位阵当然正定,这有什么好问的
AB*B^(-1)*A^(-1)=AEA^(-1)=AA^(-1)=E(E为单位矩阵)从而AB为可逆矩阵,逆矩阵为B^(-1)*A^(-1)
C不对,因为此时只能用初等行变换才有相应结果
(B+E)转置=B转置+E转置=B转置+E又(A+E)^(-1)=(B+E)转置所以(B+E)转置(A+E)=(B转置+E)(A+E)=E,B转置A+B转置+A+E=E,(B转置+E)A=-B转置,|
如图,由条件可推出A是两个可逆阵的乘积,所以A可逆.经济数学团队帮你解答,请及时评价.
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
由A,B正交,所以有AA'=A'A=E,BB=B'B=E所以|A'(A+B)|=|A'A+A'B|=|E+A'B||B'(A+B)|=|B'A+B'B|=|B'A+E|=|(B'A+E)'|=|A'B
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.