A为n阶方阵,R(A)=n-1,a1,a2为Ax=b解,k为常数,则Ax=0为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:30:35
A为n阶方阵,R(A)=n-1,a1,a2为Ax=b解,k为常数,则Ax=0为
设A为n阶方阵,证:R(A的n次方)=R(A的n+1次方)(n为自然数)

证明A^(n+1)·x=0和A^n·x=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A^n)>=rank(A^(n+1))>=0中间一定有

设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n

因为A=A^2所以A(A-E)=0\x0d所以r(A)+r(A-E)≤n.\x0d参:\x0d\x0d又n=r(E)=r(A+E-A)≤r(A)+r(E-A)=r(A)+r(A-E)\x0d参:\x0

设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,A

因为(Aα1,Aα2,...,Aαn)=A(α1,α2,...,αn)当A可逆时,r(Aα1,Aα2,...,Aαn)=r(α1,α2,...,αn)=n.所以Aα1,Aα2,...,Aαn线性无关.

A是N阶方阵,A的代数余子式都不为零,则R(A)>=n-1,

A的代数余子式为A的n-1阶子式,其满秩故A的秩>=n-1

线性代数问题n阶方阵A,A*为A的伴随矩阵,求证1:当r(A)=n-1时,r(A*)=1;2:当r(A)<n-1时,r(

1、当r(A)=n-1时:由于AA*=det(A)I=0Ax=0的基础解系的向量个数是n-r(A)=1所以r(A*)≤1又因为A*的矩阵元是A的n-1阶代数余子式,因为r(A)=n-1,必有不为零的代

设A为n阶方阵,且A2=A,则R(A)+ R(A- E) =

求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)

设A为n阶方阵,AA=A ,证明R(A)+R(A-E)=n

(1)A^2=A,所以A(A-E)=0所以r(A)+r(A-E)=r(A+E-A)=r(E)=n所以r(A)+r(A-E)=n再问:R(A)+R(B)>=R(A+B)这怎么得来的?再答:A的所有列向量

(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n

证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=

设矩阵Am*n的秩r(A)=m〈n,B为n阶方阵,则

正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)再问:谢谢!!!

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)

当R(A)=n时,有A可逆,|A|≠0,由AA*=|A|E,说明A*可逆,R(A*)=n当r(A)=n-1时,有A不可逆,|A|=0所以AA*=|A|E=0,所以r(A*)=1.所以r(A*)=1当r

设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)

这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.中间等号必须成立,因此r(A)+r(A-E)=n.2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r

设A,B均为n阶方阵,且AB=0,证明r(A)=n-1时,r(A*)=1

AA*=|A|Er(A)=n-1,说明|A|=0因此AA*=0于A*的列向量为齐次方程AX=0的解向量从而r(A*)=1总之r(A*)=1

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设A为n阶(n≥2)方阵,证明r(A*)= n ,r(A)=n r(A*)= 1,r(A)=n-1 r(A*)= 0,r

点击看大图:再问:当r(A)=n-1时,A至少有一个n-1阶子式不为0,那为什么A*≠0?再答:A*是由代数余子式Aij构成的Aij=(-1)^(i+j)MijMij包含了A的所有n-1阶子式所以至少

设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

若A为n阶实方阵,证:r(A)=r(AT A)

1设方程AX=0则ATAX=0所以,满足AX=0的解一定满足ATAX=02设方程ATAX=0则XTATAX=0(AX)TAX=0所以AX=0,那么满足ATAX=0的解一定满足AX=0由12可知AX=0