A为n阶方阵证明At与A的特征值相同
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:04:43
这个很简单啊,r(A)
只要证明(ATA-1AB)T(ATA-1AB)=单位阵就行用转置的性质(AB)T=BTAT和ATT=A的到(ATA-1AB)T=BTATA-1TA,用它乘上ATA-1AB用条件A,B都是n阶正交阵所以
|AB|=|A||B|=|B||A|=|BA|
因为A可逆,所以A^(-1)ABA=BA所以AB与BA相似.
因为r(A)=r(A^T)所以A,A^T等价,即相抵
因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.
可以用矩阵与行列式的性质分别如图证明.经济数学团队帮你解答,请及时采纳.再问:第一题呢再答:你仔细看一下,前两行是第(2)问,后两行是第(1)问。
确实缺少条件A的伴随矩阵,通常就是用A右上角*表示的.有这样的关系:若A非退化,则A*(A伴随)=det(A)*E.E为单位矩阵.从而有det(A)*det(A伴随)=det(A)^n.所以det(A
(相似矩阵具有相同的特征多项式.)转置矩阵与原矩阵的行列式相同,所以:|A|=|A^T|(由行列式额度展开式可以证明)A-vE与A^T-vE只有对角线上的元素不同,所以互为转置矩阵,即(A-vE)=(
利用|xE-A^T|=|(xE-A)^T|=|xE-A|==>方阵A与方阵AT有相同的特征多项式,从而有相同的特征值.
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question
设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a
A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1
把X按列拉成向量vec(X),那么原方程等价于(I*A-B^T*I)vec(X)=0其中I*A和B^T*I都是Kronecker乘积.注意I*A-B^T*I的特征值恰好是所有的λ_i-μ_j,其中λ_
请看图片\x0d
A的行列式不为零说明A可逆所以A^(-1)*AB*A=BA即AB与BA相似
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
A与B有相同的n个互异的特征根,故A与B相似于同一个对角阵,故A,B相似,则存在可逆矩阵P有B=PAP^-1设Q=AP^-1,则A=PQ,B=PQ.