A为n阶正交矩阵行列式|A^2|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:08:07
A为n阶正交矩阵行列式|A^2|
设A,B是两个n阶正交矩阵,且AB的行列式为-1.n为奇数 求A-B的行列式

题目应该是哪里抄错了,下面构造例子说明这一点.设2阶矩阵C(t)=[cos(t),sin(t);-sin(t),cos(t)],可知C(t)正交且|C(t)|=1.对n=3,考虑3阶分块矩阵A=[-1

如果A,B为n阶正交矩阵,求证AB也是正交矩阵.

这是显然的因为A,B为n阶正交矩阵所以A^=A-1,B^=B-1因此(AB)^=B^A^=B-1A-1=(AB)-1从而AB也是正交矩阵

线性代数:n阶方阵A为正交矩阵,证明A*为正交矩阵

因为n阶方阵A为正交矩阵,故A'A=E,得A^-1=A'可逆!且IA'AI=IA'IIAI=IAI^2=IEI=1.A^-1=A*/IAIA*=IAIA^-1=IAIA'故(A*)'A*=(IAIA'

求证:若A为正交矩阵,则A的行列式的值为±1

因为A为正交矩阵所以AA^T=E两边取行列式得|AA^T|=|E|即有|A||A^T|=1所以|A|^2=1所以|A|=1或-1.

线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零

|A(A^T-E^T)|=|A||A^T-E^T|=|A||(A-E)^T|=|A||A-E|注:知识点|A^T|=|A|.

设A,B是两个n阶正交矩阵,且AB的行列式为-1.证明:A+B的行列式为0

以A'表示A的转置所以A'A=AA'=E,B'B=BB'=E有|A'(A+B)B'|=|(A'A+A'B)B'|=|(E+A'B)B'|=|B'+A'|=|A+B|同时|A'(A+B)B'|=|A'|

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

证明“若A为n阶正交阵,则其伴随矩阵A*也一定是正交矩阵.”

知识点:(A*)^T=(A^T)*因为A是正交的,所以A^TA=E(或AA^T=E)所以(A^TA)*=E*所以A*(A^T)*=E所以A*(A*)^T=E所以A*是正交矩阵.

设A是n阶正交矩阵,A的行列式=-1,则A的伴随矩阵的转置是多少?为什么是-A呢?

A*A=|A|E=-E,所以A*=-A^(-1),又因为A的转置乘以A等于E,所以A^(-1)=A的转置,带入前面的式子不就是-A嘛

A是n阶正交矩阵,若A的行列式为1,证明当n为奇数时,E—A的行列式为0

证明:由已知,AA'=E所以|E-A|=|AA'-A|=|A(A'-E)|=|A||A'-E|=1*|(A-E)'|=|A-E|=|-(E-A)|=(-1)^n|E-A|=-|E-A|.故|E-A|=

n阶矩阵A 的行列式/A/ 为0 它的伴随矩阵 A* 行列式值夜为0 为什么?

若|A|=0假设|A*|不等于0则A*可逆即(A*)^-1乘以A*=E则A=AA*(A*)^-1=|A|(A*)^-1=0即A为0矩阵它的伴随矩阵也是0矩阵这与|A*|不等于0矛盾得证

设A为n阶矩阵,证明A为正交阵的充分必要条件是A*为正交阵

A为正交阵当且仅当A的逆为正交阵(这个结论应该都讲过,不用证了吧……要证的话也很简单),A*=|A|乘以A的逆,得证.

设A为正交矩阵,则A的行列式=?

±1再问:怎么算?再答:

设n阶非零实数矩阵A满足A的伴随矩阵等于A的转置,试证A的行列式等于一,且A为正交矩阵

首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得

设A是n阶正交矩阵,则A的行列式是多少?只要解题过程即可

/>因为A是正交矩阵所以A(A^T)=E两边取行列式得:|A||A^T|=1又|A^T|=|A|所以|A|²=1得|A|=±1答案:|A|=1或-1

正交矩阵的性质A是n阶正交矩阵,证明A*也是正交矩阵结果如下:由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵

|A|表示A的行列式,行列式是能计算出来的,是一个具体的数哦,所以这里|A|是当一个常数一样得提出来做乘积,当然不需要做转置.

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

矩阵证明题1、证明:若A与B都是n阶正交矩阵,则AB也是正交矩阵.2、证明:对任意的n阶矩阵A,A+A^T为对称矩阵,A

1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A

若A是n阶正交矩阵,证明它的行列式为1或-1

可用行列式的性质如图证明.经济数学团队帮你解答,请及时采纳.

A为n阶矩阵,A的行列式为3则|2A逆-A*|=

|2A逆-A*|=|2A*/|A|-A*|=|(2E/|A|-E)A*|=|2E/|A|-E||A*|=|-1/3E||A|^(n-1)=(-1/3)^n*3^(n-1)=(-1)^n/3