a为三阶矩阵a的绝对值等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:34:05
证明:因为2A^-1B=B-4E所以2B=AB-4A所以(A-2E)B=4A所以|A-2E||B|=|4A|=4^3|A|≠0所以|A-2E|≠0所以A-2E可逆.
A^-1=1/|A|xA*=1/2A*所以1/2=|A^-1|=|1/2A*|=1/8|A*|,|A*|=4|3A^-1+2A*|=|3*1/2A*+2A*|=|7/2A*|=(7/2)^3*4=34
条件得到AX1=0,AX2=0,AX3=0X1,X2,X3为方程AX=0的三个无关解所以秩为0,所以A为三阶的0矩阵再问:为什么x1x2x3是三个无关的解呢?再答:特征值定义
R(B)=2由于AB=0所以R(A)+R(B)
3的n次方乘以2的n-1次方.
1.|(3A^-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|-A(-1)|=(-1)^4*1/|A|=1/22.D=(-1)*5*(-1)^(3+1)+2*3*(-1)^(3+2)+1
|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:
由于|E-A|=0,|E+A|=0,|3E-2A|=0,故可知1,-1,3/2,均为A的特征值,由于A为3阶矩阵,故A最多有3个互不相同的特征值,因此A的特征值即为1,-1,3/2,由特征值和矩阵行列
因为λE-A=0,所以λ'E-(A+E)=0,推出(λ'-1)E-A=0,故λ'-1=λ,即λ'=λ+1所以A+E特征值为A的特征值加1,分别为1,2,3;同理A-E特征值为A的特征值减1,分别为-1
若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
|A*|=|A|^(n-1)=2^2=4.证:A*=|A|A^(-1),得|A*|=|A|^n*|A^(-1)|=|A|^(n-1).
A为三阶矩阵A^2=0则2r(A)《3r(A)《1r(A)=0,1若r(A)=0,则r(A*)=0若r(A)=1〈(n-1)=2,则r(A*)=0再问:2r(A)《3为什么啊再答:定理,AB=0,则R
|a|=|-3/7|=3/7所以a=±7分之3
因为A^2=0所以r(A)+r(A)
1)=2*|A|*|A|=182)|13/20||3/21-1||0-10|
这一句话就证明了:因为4阶矩阵A的秩为2,所以它的三阶子式一定全为0,(否则秩会为3)既然三阶子式全为0,那么按照伴随矩阵的定义:它的元素全为0,即为0矩阵.故秩为0其实有一个结论:对于一个n阶方阵.
再问:恩恩,为什么a逆矩阵的行列式的值为-1/3?再答:AA^(-1)=E,所以|A|*|A^(-1)|=1,因此|A^(-1)|=1/|A|=-1/3
A为正交矩阵,故AA*=E,A与A*的特征值是一样的,3为A的特征值,故|3E-A|=0,且|3E-A*|=0,|E-3A|=|AA*-3A|=|A||A*-3E|=0,转置打不出来,就用星号代替了.
3/7或-3/7再答:请采纳谢谢