A为二阶非零矩阵A的2016次

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:52:22
A为二阶非零矩阵A的2016次
e的A次幂且A为矩阵怎么算,最好举个例子

e的A次幂,其实就是对矩阵A中的每一个数进行EXP运算,比如:>>A=[111;222;333]A=111222333>>exp(A)ans=2.71832.71832.71837.38917.389

若A的k次幂等于0,k为某个正整数,则称A是幂零矩阵,证明幂零矩阵的特征值必为0

A的特征值为a,特征向量为x,即Ax=ax,A^2x=A(ax)=a^2x,.,A^kx=a^kx=0,故a^k=0,a=0

f(x)表示一个k次多项式,A为n阶矩阵,则f(A)的特征值是否全部可用A的特征值表示?

若x1,x2,...xn为A的所有特征值,那么f(A)的所有特征值是f(x1),f(x2)...f(xn),不会有别的特征值不是由f(xi)得到的我是上海交大学生

设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是(  )

A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关

求证:正交矩阵A是正定矩阵的充分必要条件为A是单位矩阵

设k是A的特征值则k是A^T的特征值,1/k是A^-1的特征值因为A正交,则A^-1=A^T所以k=1/k所以k=1or-1若A正定,则k=1.所以A的特征值都是1.所以A与单位矩阵相似所以A=E.反

求下列齐次线性方程组Ax=0的基础解系与通解,其中系数矩阵A为:

(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为

矩阵的逆是用A的T次表示的.那么复矩阵A的H次 表示什么 如图:

这个不是矩阵的T,或者H次方这2中都是转置矩阵的意思:1,当A是实数矩阵的时候,他的转置矩阵用AT表示.2,当A是复数矩阵的时候,他的共轭转置举证用AH表示.也就是说AH=(A的共轭)在转置建议楼主在

设方阵A满足A的k次幂=0,如何证明矩阵(I-A)可逆 (I为单位矩阵)

可用运算性质如图凑出逆矩阵.经济数学团队帮你解答,请及时采纳.再问:谢谢这个凑法还真没看出来

求矩阵的n次幂矩阵A为(2,2-2,-3)

用特征值特征向量将A对角化A=Pdiag(1,-2)P^-1A^n=Pdiag(1,(-2)^n)P^-1

设mxn实矩阵A的秩为n,证明:矩阵A^TA为正定矩阵.

证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^

设A为N的阶方阵,若A经过若干次初等变换成矩阵B,则()成立?

B因为初等变换只会改变对应行列式的值的正负

n 阶方阵 A ,齐次线性方程组 AX = 0 有两个线性无关的解向量,A*为 A 的伴随矩阵,证明:

令x1,x2,为A有2个无关解,则S=n-r(A)r(A)=n-2〈n-1则r(A*)=0,即A*=0所以x1,x2也为A*X=0的解再问:能将的详细一点吗?不是很明白。r(A)=n-2〈n-1则r(

齐次线性方程组的系数行列式|A|=0,A为n*n的矩阵,而A中某元素代数余子式不等于0.写不开了.见补充

证:因为|A|=0,所以r(A)=n-1.故r(A)=n-1.所以齐次线性方程组AX=0的基础解系含n-r(A)=1个解向量.所以AX=0的任一个非零解都是它的基础解系.因为AA*=|A|E=0.所以

证明:对任意的n阶矩阵A,A+A'为对称矩阵,A-A'为反对称矩阵.

...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵

设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得的矩阵,则有 A |A|=|B| B 若 |A|=0,则一定有|B|

B正确.方阵A经初等变换化成B,其行列式的关系是|A|=k|B|,其中k为非零数.故知(A),(D)不对.(B)正确.

设A为86的矩阵,已知它的秩为4,则以A为系数矩阵的齐次线性方程组的解空间维数为?

若m×n阶矩阵A的秩为R(A),则Ax=0的解空间维数为n-R(A).所以本题解空间的维数为6-4=2维.

实对称矩阵对角化用正交矩阵化实对称矩阵A为对角矩阵的步骤归纳如下:(1).(2)对每个特征值入i,求出相应齐次线性方程组

这一般不是通过“验证”的方法做的,你按照施密特正交化法得到的就是正交的了,不需要验算再问:它基础解系里有的是正交向量组有的不是正交向量组啊是正交向量组的也用施密特法?已经正交化了的再正交化一遍?再答: