A为二阶非零矩阵A的2016次
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:52:22
e的A次幂,其实就是对矩阵A中的每一个数进行EXP运算,比如:>>A=[111;222;333]A=111222333>>exp(A)ans=2.71832.71832.71837.38917.389
A的特征值为a,特征向量为x,即Ax=ax,A^2x=A(ax)=a^2x,.,A^kx=a^kx=0,故a^k=0,a=0
若x1,x2,...xn为A的所有特征值,那么f(A)的所有特征值是f(x1),f(x2)...f(xn),不会有别的特征值不是由f(xi)得到的我是上海交大学生
A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关
设k是A的特征值则k是A^T的特征值,1/k是A^-1的特征值因为A正交,则A^-1=A^T所以k=1/k所以k=1or-1若A正定,则k=1.所以A的特征值都是1.所以A与单位矩阵相似所以A=E.反
(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为
这个不是矩阵的T,或者H次方这2中都是转置矩阵的意思:1,当A是实数矩阵的时候,他的转置矩阵用AT表示.2,当A是复数矩阵的时候,他的共轭转置举证用AH表示.也就是说AH=(A的共轭)在转置建议楼主在
可用运算性质如图凑出逆矩阵.经济数学团队帮你解答,请及时采纳.再问:谢谢这个凑法还真没看出来
用特征值特征向量将A对角化A=Pdiag(1,-2)P^-1A^n=Pdiag(1,(-2)^n)P^-1
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
B因为初等变换只会改变对应行列式的值的正负
令x1,x2,为A有2个无关解,则S=n-r(A)r(A)=n-2〈n-1则r(A*)=0,即A*=0所以x1,x2也为A*X=0的解再问:能将的详细一点吗?不是很明白。r(A)=n-2〈n-1则r(
线性方程组AX=0有非零解r(A)
证:因为|A|=0,所以r(A)=n-1.故r(A)=n-1.所以齐次线性方程组AX=0的基础解系含n-r(A)=1个解向量.所以AX=0的任一个非零解都是它的基础解系.因为AA*=|A|E=0.所以
...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵
B正确.方阵A经初等变换化成B,其行列式的关系是|A|=k|B|,其中k为非零数.故知(A),(D)不对.(B)正确.
若m×n阶矩阵A的秩为R(A),则Ax=0的解空间维数为n-R(A).所以本题解空间的维数为6-4=2维.
这一般不是通过“验证”的方法做的,你按照施密特正交化法得到的就是正交的了,不需要验算再问:它基础解系里有的是正交向量组有的不是正交向量组啊是正交向量组的也用施密特法?已经正交化了的再正交化一遍?再答: