A为实正定矩阵,b1.b2为任意n个非零实数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:02:22
A为实正定矩阵,b1.b2为任意n个非零实数
已知A为6阶矩阵,|A=|(B1,B2,...,B6)|=2,B=(B2,B3...,B6,B1)C=(B6,B1,B2

B+C=(B2+B6,B3+B1,B4+B2,B5+B3,B6+B4,B1+B5)A=(B1B2B3B4B5B6)所以B+C=A*(0100011010000101000010100001011000

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

怎样证明矩阵A为正定矩阵

正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,

对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?

线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T

设mxn实矩阵A的秩为n,证明:矩阵A^TA为正定矩阵.

证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^

求证!A为n*m实矩阵,证A^TA为m阶正定矩阵

用定义很明显A^TA半正定,但是不可能证明正定,除非A满秩且m

设A,B为正定矩阵,证明A+B为正定矩阵.

矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'(A+B)a>0;所以A+B也是

实对称矩阵A正定的充要条件是A的伴随矩阵为正定的,为什么?

必要性:adj(A)=A^{-1}/det(A)因此adj(A)正定充分性的反例:A=-1000-1000-1adj(A)=-A

矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?

答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A

证明:A,B均为N阶正定矩阵,则A+B也为正定矩阵

设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵

设A,A-E都是n阶正定矩阵,证明E-A^-1为正定矩阵

正定的充分必要条件是所有特征值为正,故可如图证明.经济数学团队帮你解答,请及时采纳.谢谢!

设A为正定矩阵,则下列矩阵不一定为正定矩阵的是

正定矩阵的特征值ai>0A^T,A+E,A^-1,A-2E的特征值分别为ai,ai+1,1/ai,ai-2所以只有A-2E的特征值可能为负值所以A-2E不一定正定

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

A为正定矩阵B为同阶实对称矩阵,证明A+iB可逆

A=CC^T=>A+iB=C(I+iC^{-1}BC{-T})C^T括号内的矩阵特征值实部都是1,所以非奇异再问:老师,括号内的矩阵特征值实部为什么是1呀~再答:因为C^{-1}BC^{-T}是实对称

设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.

证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T

设M为逆,A为正定矩阵,证明M'AM是正定矩阵.

(M'AM)'=M'A'M=M'AM,故M'AM是对称的,对任意非零x,由M可逆,Mx也非零,再由A为正定矩阵得x'M'AMx=(Mx)'A(Mx)>0,故M'AM是正定矩阵.

设A为可逆矩阵,试征;ATA为正定矩阵

证明:对任一n维非零向量X因为A可逆,所以AX≠0.所以X^T(A^TA)X=(AX)^T(AX)>0[内积的非负性][这里用到A是实矩阵的条件]所以A^TA是正定的.

设A是3阶实对称矩阵,b1 b2是属于a的不同特征值的特征向量,则3阶方阵B=(b1,b2,3b3)的秩r(B)为?b1

由于属于不同特征值的特征向量线性无关所以β1,β2是B的列向量组的极大无关组所以r(B)=2β1^Tβ2=0--实对称矩阵属于不同特征值的特征向量正交