A为对称矩阵,tr(A)=0,求所有A构成的线性空间的维数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:54:22
A为对称矩阵,tr(A)=0,求所有A构成的线性空间的维数
矩阵A为实矩阵,且(A^T)A=A(A^T).证明:A是对称矩阵.

这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?

线性代数:为什么tr(A'BA)=tr(A'AB)?A'为A的转置.tr为矩阵的迹.

tr(AB)=tr(BA)====>tr(A'AB)=tr(A'BA)第一等式是公式,很多搞数学的已经证明绝对正确!

在量子力学中,Tr为迹,(trace),A,B,C为矩阵,证明:(1).Tr(AB)=Tr

你好无聊啊,问这种问题,谁给你打这么复杂的公式推导第一个公式直接把(AB)ii的表达式写出来,然后求和,很容易证明与(BA)ii的求和相等第二个直接用第一个式子证明,将A视为一个矩阵,BC视为一个矩阵

已知:A为n阶实正定对称矩阵,B为n阶反实对称矩阵 证:det(A+B)> 0

A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==

1、设-1是三阶实对称矩阵A的二重特征值,且A的迹tr(A)=4,那么A的逆的特征值为多少?

1.特征值分别记为a1,a2,a3,则tr(A)=a1+a2+a3=4,令a1=a2=-1,则a3=6所以A的特征值为-1,-1,6,所以A逆的特征值为1/a1,1/a2,1/a3,即-1,-1,1/

对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?

线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T

设A为n阶实对称矩阵,若A的平方=0,证明A=0

实对称阵于是A=A‘(A的转置),那么A²=AA’=0设A=(aij),那么AA‘=(∑(aij)²),于是(∑(aij)²=0,aij=0,对1≤i,j≤n,这就证明了

已知A为实对称矩阵,A的平方=0.求证:A=0

反证法:设A为实对称矩阵,并且A不等于零,不妨设A的第i行有一个非零元素,则A的平方的第i行第i列处的元素是A的第i行元素的平方和,由前面的假设,A的平方将不等于零,矛盾.

A为n阶矩阵 B=AA^T 求B是对称矩阵`

因为B^T=(AA^T)^T=(A^T)^TA^T=AA^T=B所以B是对称矩阵

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设A为对称矩阵,且|A|≠0,证明:A^-1也为对称矩阵

因为|A|=|A^T|≠0所以A^T可逆A^-1=(A^T)^-1=(A^-1)^T所以A^-1为对称阵

矩阵A秩为三,为实对称矩阵 A^2+A=0.求特征值

A秩为3,则,x为A特征值对角矩阵diag(x1,x2,x3,0)A^2+A=0(A+E)A=0r(A+E)+R(A)《4r(A+E)《1即r(A+E)=1A化为对角矩阵diag(x1,x2,x3,0

设n阶矩阵A的秩为1,证明A^2=tr(A)A

知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

A为实对称矩阵 P为可逆矩阵 为什么P‘AP是对称矩阵

设B=P‘AP那么B‘=(P‘AP)‘=(AP)‘P=P‘A‘P因为A‘=A,所以B‘=P‘AP=B,所以P‘AP也是对称矩阵

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

A为n阶矩阵, 证:tr(A^k)=A的各个特征值的k次方之和

设a1,...,an是A的特征值则a1^k,...,an^k是A^k的特征值(定理结论)所以tr(A^k)=a1^k+...+an^k.(定理)

线性代数中相似矩阵的对角线元素之和相等吗?也就是Tr(A)=Tr(B)

是的,迹是相似不变量迹就等于所有特征值的和,而相似的矩阵特征值全都一样,那么迹当然相等了

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

设A为是对称矩阵,且A^3-3A^2+5A-3I=0 ,问A是否为正定矩阵?

解:设a是A的特征值则a^3-3a^2+5a-3是A^3-3A^2+5A-3I=0的特征值所以a^3-3a^2+5a-3=0即(a-1)(a^2-2a+3)=0因为A是实对称矩阵,A的特征值都是实数所