a向量的摸等于B向量的摸则A向量等于B向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:17:56
mod(模)等于零的向量叫做零向量,记作0,注意零向量的方向是任意的.但我们规定:零向量的方向与任一向量平行,垂直.错的,向量有大小,又有方向,模相等只表明大小相等,方向不等,向量的方向是360°,任
∵丨a丨=丨b丨=1,cosθ=60°∴(a-b)(a+2b)=a²+a·b-2b²=丨a丨²+丨a丨丨b丨cosθ+2×丨b丨²=1²+1×1×co
设向量b=(x,y)因为a·b=0,所以4x+3y=0即x=-3/4y因为向量b是一个单位向量,所以x^2+y^2=1所以(-3/4y)^2+y^2=1(25/16)y^2=1y=4/5或-4/5x=
不对!因为向量是有方向的就算是标量,这个命题也是个假命题
用平方差公式是犯了概念性的错误,正确的解答为:∵│a+b│^2=a^2+b^2+2ab=│a│^2+│b│^2+2│a││b│cos60度=7∴│a+b│=√7同理│a-b│^2=a^2+b^2-2a
两边同时平方得到a^2+b^2+2ab=a^2+b^2-2ab得到ab=0所以ab夹角为90°
假设a向量=(x1,y1),b向量=(x2,y2)那么a向量膜的绝对值乘b向量膜的绝对值等于|a|*|b|=|x1*x2+y1*y2|∵向量a*向量b=|a|*|b|*cos(a与b的夹角)∴|a|*
你这个问题没说清楚,是不是|a+b|=|a-b|如果是这样的问题.|a|^2+|b|^2+2ab=|a|^2+|b|^2-2ab则2ab=0,或向量ab的关系为互相垂直.cos值=0.注意书写的规范化
向量|a|=|b|=1,=60º∴a●b=|a|*|b|cos=1*1*1/2=1/2a²=|a|²=1∴a²×a●b=1/2
终于弄明白了,麻烦你看一下.这是定义上的问题.1、如果在实数域上,两个向量的点乘就是数,而数的共轭就是它本身,如3的共轭是3.那么“(向量a乘以向量b)等于(向量b乘以向量a)的共轭”是显然成立的.2
/>∵|向量a|=|向量b|=1∴向量a*向量b=|向量a|*|向量b|*cos=cos若向量a与向量b同向,则=0°,向量a*向量b=cos0°=1;若向量a与向量b反向,则=180°,向量a*向量
∵向量a与向量b互相垂直∴向量a*向量b=0∵向量a的绝对值等于1∴向量a*(向量a+向量b)=(向量a的绝对值)^2+向量a*向量b=1^2+0=1.
2*cos120º=-1
楼上回答不对a-b在a+b上的投影应该是a-b的模乘以他们的夹角因为夹角=-12/根号(26*50)a-b的模=根号26相乘=-12/根号(50)=-(6/25)*根号(50)
a于b夹角的余弦值=a向量与b向量的数量积/(a模b模)=(3*(-2)+1*2)/(√(3^2+1)√((-2)^2+2^2))=-4/(4√5)=-√5/5再问:谢谢谢谢再答:呵呵,不客气,解决了
错的两个向量不一定共线
ab=3故│a││b│cosθ=5而b向量在a向量方向上的投影=│b│cosθ根据│a│=5得到而b向量在a向量方向上的投影=│b│cosθ=3/5
│a│=2│b│=1│a-b│=2a*b=(a²+b²-(a-b)²)/2=(│a│²+│b│²-│a-b│²)/2=(4+1-4)/2=1
|2*向量a-向量b|=2再问:过程?0.0没有吗?就这么简单?再答:|2*向量a|=|向量b|a,b的夹角为602*向量a、向量b、2*向量a-向量b、|显然构成一个正三角形。再问:谢谢啦
50=|向量a+向量b|²=a²+b²+2ab=5+b²+20,b²=25,|b|=5