A对称正定阵,B反对称阵,求证A+B可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:50:04
特征方程吗!x^2-5x+6=0所以特征值为x1=2,x2=3,x3=2或者3特正直都是正数,一定正定了...
(A^2)^T=(A^T)^2=(-A)^2=A^2故A^2是对称的.
证明:∵A是对称矩阵∴A^T=A∵B是反对称矩阵∴B^T=-B∴(AB-BA)^T=B^T*A^T-A^T*B^T=-BA-A(-B)=AB-BA∴AB-BA是对称矩阵证毕
由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是
选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序
再问:��һ��������[��A-B��^T]-1(A-B)^T��ô���ɣ�A+B��^-1(A-B)��再答:(A+B)^T=(A^T+B^T)��ע�A�ǶԳƵ�,BΪ���Գƿɵá��
A一定是零矩阵,A的转置=A,A的转置=-A,故A=-A,2A=O,A=O.
对非零列向量xBx是一个列向量则(Bx)'(Bx)>=0[这里要求B是实矩阵--线性代数默认]这是内积的非负性(一个性质),原因:设Bx=(a1,...,an)'则(Bx)'(Bx)=a1^2+...
1.A'记作A的转置A'=(P'BP)'=P'B'PB为m阶对称正定阵,即B'=B所以A'=P'BP=A,即A是对称的.2.r维非零向量x,x'Ax=x'(P'BP)x=(Px)'B(Px)因为R(P
X=(X+X^T)/2+(X-X^T)/2至于怎么想的,只要X=U+VX^T=U^T+V^TU^T=UV^T=-V解一下方程就出来了再问:高,实在是高。就是说,第一项是对称阵,第二项是反对称阵?再问:
题:若A对称矩阵,B是反对称矩阵,AB-BA是对称矩阵吗?怎么证明?由已知,A=A',B=-B'故(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA即AB-BA是对称矩阵.
A是对称矩阵,则A^{-1}对称,再利用定义可证(A∧(-1)B∧2-B∧2A∧(-1))^T=-(A∧(-1)B∧2-B∧2A∧(-1))
yajun宝贝,由反对称矩阵定义知有B=-B^T,于是A-B^TB=A+B^2,由正负矩阵的定义有X^TAX>0,于是X^T(A-B^TB)X=X^TAX-X^TB^TBX=X^TAX+(B^TX)2
任取非零向量α=(α1,α2,...αn),存在非零向量β=(β1,β2...βn),使得α'β=I,则有β'α=I因为A-B正定,则有α(A-B)α'>0,则αAα'>αBα'由A,B正定得A逆,B
A,B是对称的,可交换的故他们可同时对角化.且AB可与其同时对角化.A,B是半正定的,对角化后对角线上的结果是非负的.故AB对角化后的结果对角线上非负.故AB是半正定的.另外对称是显然的.再问:为什么
这用到一个结论:实反对称矩阵的特征值是零或纯虚数所以I-A^2的特征值为1或1-(ki)^2=1+k^2>0所以I-A^2是正定矩阵
取可逆阵C使得A=CC^T,那么A-B正定等价于I-C^{-1}BC^{-T}正定,再分析后者的特征值即可.更省事的做法是B^{-1}-A^{-1}=A^{-1}(A-B)A^{-1}+A^{-1}(
因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件
若A,B都是n阶对称矩阵,则有A的转置=A,B的转置=B.(2A--3B)的转置=2*A的转置-3*B的转置=2A--3B∴2A-3B也是对称矩阵.(AB--BA)的转置=(AB)的转置--(BA)的
证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(