A是mxn型矩阵,x1,x2是非其次线性方程组ax=b的两个不同解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:29:06
首先,更正LZ的一个错误:B不一定是Ax=0的解空间S记B=(b1,b2,……,bs),由AB=0,知b1,b2,……,bs是Ax=0的解但并不能说b1,b2,……,bs构成了Ax=0的解空间S解空间
由AB=E知r(AB)=r(E)=m所以m=r(AB)再问:请问m=r(AB)
我印象中只有X1乘X2=c/a,如果你非要求X1-X2,可以用(X1-X2)^2=(X1+X2)^2-4乘X1乘X2
因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示
由已知AB是mxm矩阵由于r(AB)
非齐次方程组无解的情况是系数矩阵的秩与增广矩阵的秩不一样而题中系数矩阵的秩m,方程组也只有m个,所以增广矩阵的秩不可能大于m,且增广矩阵的秩是大于系数矩阵的,所以增广矩阵的秩也为m,所以此非齐次方程组
Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)
还带有提示.\x0d请看图片:\x0d\x0d\x0d满意请采纳^_^.
这是个性质r(AB)再问:那这边怎么判断min{R(A),R(B)}就是R(B)呢再答:这不一定,要看具体情况再问:答案直接说由于R(AB)
方程(1):Ax=0,方程(2):ATAx=0首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):ATAx1=AT(Ax1)=AT*0=0其次证明(2)的解也是(1)的设x1是(
D、矩阵A存在m-r个行向量线性无关这个说法是错误的这个说法与C中的说法矛盾其实也应该是r个先行无关的向量
当m>n时,r(A)
设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(
R(A)=m是AX=b有解的充分条件,但非必要条件对任何b,Ax=b总有解对任意b,b都可由A的列向量组线性表示A的列向量组与R^m的基等价R(A)=m.但是R(a1,a2,……an)=n不一定有R(
你也描述得太不清楚了,aji就是aij的转置对吧?你说的那个出发是矩阵除法还是按元素除?矩阵出发就直接bij=aij/aji'按元素除法就用./一点一个除号.这两运算都要求你这个矩阵是个方阵.单引号是
知识点:设A为n阶方阵,则|A|=0r(A)
结论是由秩的定义得出的.经济数学团队帮你解答,请及时评价.
这里主要是要说明r(B)=n.如果n>m,则有r(B)再问:为了保证向量个数不大于维数,是这个意思吗再答:也可以这样说.事实上,n
补充的问题是对的,A不一定正定,因为你没给出A是实对称阵的前提.譬如现在有一个矩阵,aii>0,aij=-aji,满足任意非零向量X使得f(x1,x2,.xn)=X'AX恒大于0
你弄反了递减的话,是:f(x1)-f(x2)>0因为x1-x2