A是mxn矩阵 B是nxm矩阵 则线性方程组(AB)X=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:28:47
由AB=E知r(AB)=r(E)=m所以m=r(AB)再问:请问m=r(AB)
CB^n=ACB^(n-1)=...=A^n*B所以任何多项式F有CF(B)=F(A)C所以任何R事B的特征值X属于B的R-根子空间,则存在n有(R-B)^nX=0则(R-A)^nCX=C(R-B)^
因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示
经济数学团队帮你解答,有不清楚请追问.请及时评价.
由已知AB是mxm矩阵由于r(AB)
非齐次方程组无解的情况是系数矩阵的秩与增广矩阵的秩不一样而题中系数矩阵的秩m,方程组也只有m个,所以增广矩阵的秩不可能大于m,且增广矩阵的秩是大于系数矩阵的,所以增广矩阵的秩也为m,所以此非齐次方程组
Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)
还带有提示.\x0d请看图片:\x0d\x0d\x0d满意请采纳^_^.
B由左边AC得知A的列数是m,右边C'B的行数是n,所以A的行数也是n,所以A是n×m矩阵
这是个性质r(AB)再问:那这边怎么判断min{R(A),R(B)}就是R(B)呢再答:这不一定,要看具体情况再问:答案直接说由于R(AB)
当m>n时,r(A)
矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n
证你说的上式也就是证明:det(A)det(E+A*BD*C)det(D)=det(A)det(E+CA*BD*)det(D) 令P(m*n)=A*BD* 则有det(
设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(
[E0*[kEA=[kEA-BkE]BE]0kE-BA],取行列式得k^M*|D|=k^N|kE-BA|,D是中间的矩阵.另一方面【E-A*D=[kE-AB00E]BE],去行列式得|D|=|kE-A
利用|xE_m-AB|=|E_n,0\\0,xE-AB|=|E,B\\0,xE-AB|=|E,B\\A,xE_m|=|E-X^{-1}BA,0\\0,xE|=λ^(m-n)|λE(n阶)-BA|可以证
知识点:设A为n阶方阵,则|A|=0r(A)
结论是由秩的定义得出的.经济数学团队帮你解答,请及时评价.
这里主要是要说明r(B)=n.如果n>m,则有r(B)再问:为了保证向量个数不大于维数,是这个意思吗再答:也可以这样说.事实上,n