A是mxn矩阵 B是nxm矩阵 则线性方程组(AB)X=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:28:47
A是mxn矩阵 B是nxm矩阵 则线性方程组(AB)X=0
设C是nxm矩阵,A是n阶方阵,B是m阶方阵,AC=CB

CB^n=ACB^(n-1)=...=A^n*B所以任何多项式F有CF(B)=F(A)C所以任何R事B的特征值X属于B的R-根子空间,则存在n有(R-B)^nX=0则(R-A)^nCX=C(R-B)^

若A,B是MxN阶矩阵,如何证明A+B矩阵的秩小于等于A矩阵的秩和B矩阵的秩的和

因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示

设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

证明a是mxn矩阵 b是nxm矩阵 n

由已知AB是mxm矩阵由于r(AB)

设A是mxn矩阵,r(A)=m,证明,线性方程组Ax=b一定有解.

非齐次方程组无解的情况是系数矩阵的秩与增广矩阵的秩不一样而题中系数矩阵的秩m,方程组也只有m个,所以增广矩阵的秩不可能大于m,且增广矩阵的秩是大于系数矩阵的,所以增广矩阵的秩也为m,所以此非齐次方程组

一道线性代数题目设A是mxn矩阵,非齐次线性方程组Ax=b有解的充分条件是?

Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)

设A是mxn矩阵,B是nxs矩阵,证明:若AB=0,则r(A)+r(B)

还带有提示.\x0d请看图片:\x0d\x0d\x0d满意请采纳^_^.

线性代数,设C是m X n矩阵 ,若有A,B,使AC=CTB 则A的行X列是什么 选项 A:mxn B:nxm C:mx

B由左边AC得知A的列数是m,右边C'B的行数是n,所以A的行数也是n,所以A是n×m矩阵

A是mxn矩阵,B是nxm矩阵,为什么当m>n时︳AB︳=0呢?m

这是个性质r(AB)再问:那这边怎么判断min{R(A),R(B)}就是R(B)呢再答:这不一定,要看具体情况再问:答案直接说由于R(AB)

设A为mxn矩阵,B为nxm矩阵,则当m>n时,矩阵AB的秩为什么小于m

矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n

四个矩阵A(mxm),B(mxn),C(nxm),D(nxn),如果A,D可逆,以A*表示A的逆,D*表示D的逆,求证.

证你说的上式也就是证明:det(A)det(E+A*BD*C)det(D)=det(A)det(E+CA*BD*)det(D)  令P(m*n)=A*BD* 则有det(

A 是mxn 矩阵,则存在矩阵B,使得AB = 0 且有r(A) +r(B)=n

设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(

设A,B分别为NxM,MxN(N>M)矩阵,K不等于0 证明:|KE-AB|=K^N-M|KE-BA|

[E0*[kEA=[kEA-BkE]BE]0kE-BA],取行列式得k^M*|D|=k^N|kE-BA|,D是中间的矩阵.另一方面【E-A*D=[kE-AB00E]BE],去行列式得|D|=|kE-A

一道关于矩阵的题设B是mxn矩阵,C是nxm矩阵,求证:|λE(m阶)-BC|= λ^(m-n)|λE(n阶)-CB|

利用|xE_m-AB|=|E_n,0\\0,xE-AB|=|E,B\\0,xE-AB|=|E,B\\A,xE_m|=|E-X^{-1}BA,0\\0,xE|=λ^(m-n)|λE(n阶)-BA|可以证

设A是mxn矩阵,B是nxm矩阵,且n>m,则|BA|=0.解析:由于BA是n阶方阵,秩r(BA)

结论是由秩的定义得出的.经济数学团队帮你解答,请及时评价.

A是nxm矩阵,B是mxn矩阵,且n<m,AB=E,求证B的列向量组线性无关

这里主要是要说明r(B)=n.如果n>m,则有r(B)再问:为了保证向量个数不大于维数,是这个意思吗再答:也可以这样说.事实上,n