A是m×n矩阵,A的转置乘A正定的充要条件是A的秩为n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:52:38
条件表明矩阵A及(A,b)的秩都等于m(因为它们仅有m行),m
由于:R(B)>=R(AB).定理(条件一)B是m*n矩阵,所以R(B)=n且R(B)
R(A)和R(B)的秩都小于等于n,而AB是m*m的方阵,m>n,所以AB不是满秩阵,所以|AB|=0
BA是m*m阶矩阵,所以R(BA)
由已知,r(A)=r(A,b)=n又因为A是实矩阵,故有r(A'A)=r(A)=n所以A'A是n阶可逆矩阵
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
这要用到性质:1.(AB)'=B'A',其中A'表示A的转置.2.A是对称矩阵的充分必要条件是A'=A那么就有(AA')'=(A')'A'=AA'所以AA'的对称矩阵.
证:因为m>n则r(A)再答:选择A再答:请采纳哦,谢谢如有疑问,我继续作答
这个就可以当公式来用,如果非要证明的话,如下:r(At*A)≤min(r(At),r(A)),而r(A)=r(At),所以r(At*A)=r(A)
R(E)=n=R(AB)≤R(B)≤n,∴R(B)=n=B的“列秩”=B的列数.∴B的列向量组线性无关.
选(B)A满秩的时候(A)错A不满秩的时候(C)错(D)永远错
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'
题目有点问题.已知条件应该有A非奇异,证明A^m非奇异,并且(A^m)^-1=(A^-1)^m为什么用归纳法,直接证明就可以了因为A非奇异,所以A可逆,即A^-1存在.因为A^m(A^-1)^m=AA
秩(ATA)≤秩(A)≤m,而矩阵ATA是n×n矩阵,n>m,所以det(AT*A)=0如果A是一个2*3的矩阵,det(AT*A)=0成立
题目中,应该是r(BA)
不对A=0100A^2=0
对任何非0的n维实向量X,由于rank(A)=n,则AX!=0,从而有X^T(A^TA)X=(AX)^T(AX)=|AX|^2>0故A^TA是正定阵
是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.