A是n阶方阵,A^2-A=0,r(A)=r

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:00:16
A是n阶方阵,A^2-A=0,r(A)=r
设A是n阶方阵,且(A+E)^2=0,证明A可逆.

由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

设A是n阶方阵,A²-A-2I=0证明:A与A+2I都可逆,并求其逆矩阵

由A^2-A-2I=0得A(A-I)=2I所以A可逆,且A逆=(1/2)(A-I).由A^2-A-2I=0得(A-3I)(A+2I)=4I.所以A+2I可逆,且其逆为(-1/4)(A-3I)

求教!】A是n阶方阵,A^2=A,证明:A相似于对角矩阵

证明:因为A^2=A,所以A(A-E)=0所以r(A)+r(A-E)

A是n阶方阵,满足A^2-2A-2E=0,则(A+E)^-1=

3E+2A-A^2=E(3E-A)(E+A)=E所以(A+E)^-1=3E-A

已知n阶方阵A,满足A^3+A^2-2A=0,I是n阶单位阵,证明矩阵A+I必可逆

A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)

设A是n阶方阵,若存在n阶方阵B不等于0,使AB=0,证明R(A)小于n.

因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

线性代数,设A是n阶方阵,且(A+E)^2=0,证明A可逆.

(A+E)^2=0A²+2A+E=0A(A+2E)=-E两边取行列式,得|A|*|A+2E|≠0所以|A|≠0即A可逆.

设A是n阶方阵,满足A*A-A-2i=0,证明A-2i与A+i不同时可逆

A*A-A-2i=0也就是(A-2I)(A+I)=0取行列式得|A-2I||A+I|=0也就是|A-2I|、|A+I|中必有一个为0那就不可逆了

线性代数问题:求证:A是5阶方阵,R(A)=3,则A*=0 另对于n阶方阵A,R(A)

知识点:当r(A)=n时,r(A*)=n当r(A)=n-1时,r(A*)=1当r(A)A是5阶方阵,R(A)=3时,r(A*)=0,所以A*是零矩阵.另对于n阶方阵A,R(A)这个不对.应该是r(A*

求||A*|A|=( ),其中A为n阶方阵,A*为A的伴随矩阵.答案是|A|^(n^2-n+1)求详解谢了!

||A*|A|=|A*|^n|A|=|A|^(n-1)n*|A|=|A|^(n^2-n+1)注:|kA|=k^n|A||A*|=|A|^(n-1)

设A是n阶方阵(n>=2),且|A|=1则|2A|=多少

|2A|=2,方阵是行与列相同的矩阵.对于矩阵A,|A|就是矩阵的模,也是它对应的行列式的值.由行列式性质可以知道,将行列式中每个数同乘以k,值也乘以k.

A是n阶方阵,若存在n阶方阵B不等于0,使得AB=0,证明A的秩小于n

因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)

证明:设A是n阶方阵,若A^2=0,则A=0

例如A=(01)(00)则A≠0且A^2=0

A是N阶方阵,A^3-A^2+3A=0,证明E-A可逆,并求出(E-A)^-1

因为A^3-A^2+3A=0所以(E-A)(-A²-3E)+3E=O(E-A)(-A²-3E)=-3E(E-A)[(-A²-3E)/(-3)]=E所以由定义得E-A可逆,

设λ=0是n阶方阵A的一个特征值,则|A|=?

行列式的值等于特征值乘积0