1.由抛物线y2=2x与直线y=x-4所围成的图形的面积是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:38:21
两方程连立,Y^2-4y-8=0y1+y2=4x1+x2=y1+y2+4所以x1+x2=8所以中点坐标为(4,2)
将直线y=2x+k带入y^2=4x,∴4x^2+(4k-4)x+k^2=0设两点的横坐标是x1,x2相应的纵坐标为2x1+k,2x2+k∵│AB│=3√5,∴3√5=√[(x1-x2)^2+(y1-y
由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=
把直线方程与抛物线方程联立得y2=4xy=x-2,消去y得到x2-8x+4=0,利用根与系数的关系得到x1+x2=8,则y1+y2=x1+x2-4=4中点坐标为(x1+x22,y1+y22)=(4,2
再答:用牛顿-莱布尼茨公式求解
设:AB中点的坐标为(x0,y0)x0=(x1+x2)\2y0=(y1+y2)\2x1^2=4y1x2^2=4y2y1*y2=-x1*x2(0A、OB斜率相乘=-1)五个式子联立得出:y0=4+-x0
32联立y=k(x-4)y^2=4x=k^2*(x^2-8x+16)得x1+x2=8+4/(k^2)y1^2+y2^2=4(x1+x2)大于32或斜率不存在,得32
解题思路:利用定积分的知识求解。解题过程:见附件最终答案:略
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
(1)联立直线x+2y+m=0(m∈R)和抛物线C:y2=x,并整理得y2+2y+m=0,∵直线x+2y+m=0(m∈R)与抛物线C:y2=x相交于不同的两点A,B.∴判别式△=4-4m>0,∴m<1
先求交点x=y^2/2=y+4y^2-2y-8=0(y-4)(y+2)=0y=4,y=-2x=y+4所以交点(8,4),(2,-2)围成的图形有一部分在x轴下方其中0
证明,由题意可知抛物线的焦点为(29/4,0)直线AB方程为y=k(x-29/4)代入曲线方程的y^2-29/k*y-29^2/4=0有根公式可得y1+y2=29/ky1*y2=-29^2/4有由题可
设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+
希望这个能帮到你,一般涉及到这种题都是从两个方面来突破从条件入手,根据给你的东西然后你能得出什么,比如说这个题就是A、B两点的关系,然后就是求出它们的关系,这样我们就联想到两个方程联立,求出它们的根与
(1)证明:由题意可得方程组y2=-xy=k(x+1),消去x可得ky2+y-k=0,设A(x1,y1)B(x2,y2)由韦达定理可得y1•y2=-1,∵A、B在抛物线y2=-x上,∴y12=-x1,
y^2=xx-2y-3=0两式联立解得:y1=3,y2=-1,所以x1=9,x2=1取y=-1,3分别为积分上下限面积=∫(上限3下限-1)(抛物线方程-直线方程)dy=∫(上限3下限-1)(y^2-
抛物线y2=x与直线x-y-2=0方程联解,得两个图象交于点B(1,-1)和A(4,2),得所围成的图形面积为:S=∫102xdx+∫41(x−x+2)dx=92.故抛物线y2=x与直线x-y-2=0
证明:(1)设直线l的方程为x=ay+b∵A(x1,y1),B(x2,y2)在抛物线y^2=x上∴x1=y1^2,x2=y2^2∵A,B也在直线l上∴x1=y1^2=ay1+b,x2=y2^2=ay2
证明:联立直线与抛物线方程得y2-2y-4=0∴y1+y2=2,y1y2=-4∴x1x2=(y1+2)(y2+2)=y1y2+2(y1+y2)+4=4∴y1y2x1x2=-1即(y1/x1)(y2/x