a的平方-3a-10e=0证明a可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:02:05
a的平方-3a-10e=0证明a可逆
设A是n阶方阵,且(A+E)的平方=O,证明A可逆

(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.

证明矩阵可逆设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵

由A^2-A-2E=0得到A(A-E)=2E所以A可逆然后得到(A+2E)*A^(-2)=E知道A+2E可逆并且由上知道A^(-1)=0.5*(A-E)(A+2E)^(-1)=A^(-2)

线性代数 入门证明题如果A=0.5(B+E),证明A的平方=A的充分必要条件是E=B的平方.

一方面A平方=A推出0.5(B+E)=0.25(B+E)平方2B+2E=B*B+2B+E所以B的平方=E另一方面E=B平方A平方=0.25(B平方+2B+E)=0.25(2B+2E)=0.5(B+E)

已知:n阶矩阵A满足A=A平方,证明:E-2A可逆且(E-2A)的负一次方等于E-2A

A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A

设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3E-A)的逆矩阵

A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E

设A平方+A=E 证明(A-E)可逆 并求(A-E)的逆矩阵

A^2+A=E所以A^2+A-2E=-E,即(A+2E)(A-E)=-E,因此-(A+2E)(A-E)=E.同理(A-E)[-(A+2E)]=E所以(A-E)可逆,逆矩阵为-(A+2E)

设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵

移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)

证明行列式已知A是2n+1阶方阵.A*A的转置=E E是2n+1阶单位方阵.证明 E-A的平方 这个整体行列式的值等于0

只需证A有特征值是1或-1.设Ax=kx(k为复特征值,x为复特征向量),则x'A'=k'x'(以'表示共轭转置,k'就是k的共轭)两式相乘,得x'x=x'A'Ax=|k|^2*x'x又x'x>0,所

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

线性代数证明题 已知n阶方阵A满足关系式A的平方-3A-2E=0,证明A是可逆矩阵,并求出其可逆矩阵

A²-3A-2E=0=>A(A-3E)=2E=>A[(A-3E)/2]=E所以A是可逆矩阵,且其逆矩阵为(A-3E)/2

设方阵A满足的平方-2A-E=0 ,证明A-2E 可逆,并求 (A-2E)的-1次方

因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

设m阶矩阵A满足A的平方 =A,证明:(1)A的特征值只能是1或0;(2)A+E

(1)设a是A的特征值则a^2-a是A^2-A的特征值而A^2-A=0,零矩阵的特征值只能是0所以a^2-a=0所以a=1或0即A的特征值只能是1或0(2)由上知,A+E的特征值只能是2或1

设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3A-E)的逆矩阵

A*A-5A+7E=A(A-3E)-2A+7E=A(A-3E)-2(A-3E)+E=(A-2E)(A-3E)+E=0∴(A-3E)(E-2A)=E∴A-3E可逆,逆矩阵是E-2A

设方阵A满足 A的平方 -2A-2E=0,证明A及A-2E均可逆,并求A的逆阵,(A-2E)的逆阵.

因为A^2-2A-2E=0所以A(A-2E)=2E即(1/2)A(A-2E)=E所以A及A-2E均可逆且A^-1=(1/2)(A-2E)(A-2E)^-1=(1/2)A

设方阵A满足等式A^2-3A-10E=0,证明A-4E可逆.

从A^2-3A-10E中分解出A-4E,A^2-3A-10E=(A-4E)(A+E)-6E=0,即(A-4E)(A+E)=6E,亦即(A-4E)(A+E)/6=E,由矩阵逆的定义可知A-4E可逆,且其

设方阵A满足A的平方—A—E=0 ,证明A可逆,并求A的负一次方.

/>A^2-A-E=0那么A(A-E)-E=0A(A-E)=E所以A可逆,A^(-1)=A-E

矩阵证明题 设A的平方=A,证明E+A可逆 并求出

拿你这题来说等式右边凑出一个k*E等式左边凑出一个(A+E)(A+mE)既(A+E)(A+mE)=kE然后拆开:A^2+(m+1)A+mE-kE=0与A^2-A=0比较系数得m+1=-1m-k=0求出