A的逆矩阵等于2乘以(A-I)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:00:01
A^3=3A^2-3A-A^3+3A^2-3A=0-A^3+3A^2-3A+I=I(I-A)^3=I所以,(I-A)[(I-A)^2]=I,即(I-A)(A^2-2A+I)=I,所以I-A可逆,且逆矩
显然可以,令A、B均为零矩阵即可.
零矩阵乘以任何矩阵等于0(矩阵)
不一定.A,B不是方阵时可以不相等.再问:如果是方阵是相等?再答:A,B是方阵时|AB|=|A||B|=|B||A|=|BA|
数学公式这里不好写,所以就用图片了.
⑴AB的转置等于B的转置乘以A的转置A为m行n列矩阵,i行j列交点处元素记﹙A﹚ijB为n行k列矩阵.﹙AB﹚'rs=﹙AB﹚sr=∑[1≤i≤n]﹙A﹚si﹙B﹚Ir﹙B'A'﹚rs=∑[1≤i≤n
首先要保证a*b是一个方阵,这需要a的行(列)数=b的列(行)数当a和b都是同阶方阵的时候,命题成立.当a和b不同阶的时候,如果a的列多余a的行,那么a*b行列式为零如果a的列少于a的行,设a的列数为
一般来讲不相等简单的例子A=0100
A是实矩阵就可以实矩阵是指A中元素都是实数不一定是对称矩阵.此时r(A^TA)=r(A)证明方法是用齐次线性方程组AX=0与A^TAX=0同解.A不一定是方阵,不一定可逆再问:如果换作A的伴随乘以A,
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
是的.前提是乘法有意义
若B为n阶Hermite正定矩阵,则存在n阶矩阵A且A为下三角矩阵,使得B等于A乘以A的共轭转置.放在实数域内就是A乘以A的转置矩阵了,其实这就是所谓矩阵的Cholesky分解.
不等于,AXB矩阵相乘满足A的行数与B的列数相等,反过来不一定成立,即BXA可能根本无法做乘法
|AA^T|=|A||A^T|=|A||A|=|A|^2
是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵
设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-
|AA^T|=|A||A^T|=|A||A|=|A|^2再问:不是AAT的行列式,就是A乘以AT,我问的是为什么AAT=|A|^2再答:这不会.AA^T是一个矩阵,|A|^2是一个数肯定是AA^T的行
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.
定理5.2设AB均为n阶方阵,则A与B的乘积矩阵的行列式等于A的行列式与B的行列式的乘积正确,但ab为n阶矩阵a+b的行列式等于a的行列式加上b的行列式吗这个是不成立的