A线性无关,A,b线性相关,怎么证明表示式唯一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:59:44
发帖踏错地方了,这里是汽车知识.
⑴,行列式|123||3-14||011|≠0,线性无关.类似地,⑵=0,线性相关.⑶=0,线性相关.⑷,=0,线性相关
证明:由向量组[a+c,b+c]线性相关,得线性关系b+c=k(a+c)+m化解得(1-k)c=k*a+m-b假设k=1,得0=a+m-b,即b=a+m线性关系这与已知向量组[a,b]线性无关相矛盾,
由题知,对任意的不全为零的K1,K2,K3.都使得K1(A+B)+K2(B+C)+K3(C+A)≠0,即A(K1+K3)+B(K2+K1)+C(K3+K2)≠0,由于K1,K2.K3是任意不全为零的数
先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1
(C)第2个减第1个等于第3个即第3个可由其余线性表示故线性相关
看向量组构成的矩阵是不是满秩的,满秩说明线性无关,不满秩则线性相关利用初等变换求矩阵的秩.1.(-121)(101)(314)-->(011)秩为2(011/20)秩为3,线性无关(002)(002)
a=kba-b=(k-1)ba-b,b线性相关
C注:A可以线性相关,只要a1,a2线性无关就行Ba1a4线性相关跟这四个向量线性无关没关系D前后正负关系,肯定线性相关D注:秩为2所以A可以先向相关,跟a3线性相关都可以,只要跟a4别线性相关.B不
几个线性无关的向量就构成决定了一个几维的坐标系.所以如果向量组B的向量个数小于向量组A的向量个数.那么就无法判断B是否线性相关.所以如果向量组B的向量个数大于等于向量组A的向量个数.那么就B一定是线性
不一定.反例:a=(1,0,0,.0)b=(0,1,0,...,0)c=(1,1,0,...,0)三个向量两两不成比例,故两两线性无关但c=a+b,故a,b,c线性相关.
R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行
令x(1,1,3,1)+y(3,-1,2,4)+z(2,2,7,-1)=(0,0,0,0),有x+3y+2z=0且x-y+2z=0且3x+2y+7z=0且x+4y-z=0,这个方程组有且只有零解,即x
设k1a+k2(a+b)+k3(a+b+c)=0则(k1+k2+k3)a+(k2+k3)b+k3c=0因为a,b,c线性无关所以k1+k2+k3=0k2+k3=0k3=0得k1=k2=k3=0所以a,
假设给出了a1...ar个向量,向量组A=(a1,a2,...ar),要求判断线性相关性(1)那么根绝定义来判断的话就是看方程k1a1+k2a2...+krar=0的解集的数量.加入只有k1=k2=.
A线性相关.个数大于维数必相关.因为此时对应的齐次线性方程组的未知量个数大于方程的个数,所以有非零解故向量组线性相关.再问:齐次线性方程组何时有非零解?再答:齐次线性方程组何时有非零解系数矩阵的秩大于
111 (a,a+b,a+b+r)=(a,b,r)011 001 后一矩正可逆,r(a,a+b,a+b+r)=r(a,b,r)=3 所以向量组a,a+b,a+b+r也线性无关
是错的结论应该是d可由其余线性表示再问:能说为什么吗?a不可以用b,d表示吗?再答:a.b.c无关则a.b无关由a.b.d相关知d可由a.b表示再问:a不可以用b,d表示吗?那a不是可以由b,d,c表
因为a1+ba2+b线性相关,所以存在不全为零的数k1,k2(不妨设k1≠0),使得k1(a1+b)+k2(a2+b)=0(k1+k2)b=-k1a1-k2a2这儿k1+k2≠0,如果=0,则0=-k