1.设X,Y的联合分布函数为 问X和Y是否相互独立?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:55:24
(1)limA(B+arctanx/2)(C+arctany/2)=0-无穷limA(B+arctanx/2)(C+arctany/2)=1+无穷所以A=1/πB=π/2C=π/2(2)接下去就是求导
F(x,y)=A(B+arctanx/2)(C+arctany/3)F(-∞,-∞)=A(B-π/2)(C-π/2)=0F(-∞,+∞)=A(B-π/2)(C+π/2)=0F(+∞,-∞)=A(B+π
根据定义做,密度函数在其定义域上两重积分值为1,由题意知:该密度函数在矩形区域 0<x<2, 2<y<4有值,而其他区域为零,且k为常数,则:只在0<
AFY的计算是对x的密度函数从-无穷积到正无穷对分布函数来说就是取x=+无穷
给你个思路吧,这个不好打1)由F(无穷,无穷)=1,F(负无穷,负无穷)=0,F(负无穷,y)=0,F(x,负无穷)=0,可以解出abc2)对F(x,y)求x,y的混合偏导数,得出的结果就是f(x,y
1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0
P(X>x,Y>y)=1-【F(x,+∞)+F(+∞,y)-F(x,y)】
由性质得:F(+∞,+∞)=1,则A(B+arctanx/2)(C+arctanY/3)=A(B+π/2)(C+π/3)F(-∞,+∞)=0A(B+arctanx/2)(C+arctanY/3)=A(
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
看不到题呀,杯具再问:设F(x,y)是二维随机向量(X,Y)的联合分布函数,Fx(x)和Fy(y)分别是X和Y的分布函数,求证F(x,y)>=1-[1-Fx(x)][1-Fy(y)]图片没传成功。。再
再问:�����Ҿ�������FX��x)����ô�õ�1-e^-0.5x�ġ�����再答:
x>0,y>0时,F(x,y)=P(X
F(-∞,-∞)=A(B-π/2)(C-π/2)=0F(-∞,+∞)=A(B-π/2)(C+π/2)=0F(+∞,-∞)=A(B+π/2)(C-π/2)=0F(+∞,+∞)=A(B+π/2)(C+π/
利用概率分布函数特性F(正无穷,正无穷)=1,F(负无穷,负无穷)=0,带入就是A(B+π/2)(C+π/2)=1A(B-π/2)(C-π/2)=0展开后,两式相加:ABC=1/2-(π^2)/4再问
(1)p(x,y)=(1/3)e^(-3x)(1/4)e^(-4y)-->k=1/12.X和Y独立.(2)P(0
E(x)*E(Y^2)=E(x)*((E(Y))^2+D(y))再问:能不能详细点呀再答:你前面都做出来啦?而E(xy^2)=e(x)*e(y^2),求出e(x)和E(y^2)啊再问:知道啦,谢谢啦,
1)P(xy<1)很简单,就是对下图阴影的面积求二重积分∫(1/2~2)∫(1/2~1/y)1/(4x²y³)dxdy= ∫(1/2~2)1/(4(1/2)y
F(-∞,y)=A*(B-π/2)(C+arctany/3)=0,B=π/2F(x,-∞)=A*(B+arctanx/2)(C-π/2)=0,C=π/2F(+∞,+∞)=A(B+π/2)(C+π/2)