bd和cd分别平分三角形abc的内角和外角
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:50:25
证明:延长FD到M,使DM=DF;又DE=CD.则⊿CDM≌⊿EDF(SAS),∠EFD=∠CMD;CM=EF.又EF=AC,则CM=AC,∠CAD=∠CMD.又∠BAD=∠CAD,故∠BAD=∠CA
简单啊、、、延长AD到点F,使得FD=AD∵AD=FD∠BDF=∠CDABD=CD∴△BDF≌△CDA(SAS)∴BF=CA∠DAC=DFB∵∠BAD=∠CAD∴∠BAD=BFD∴BF=BA∴AB=A
因为AD平分角BAC所以AD是角BAC的角平分线又因为BD=CD所以AD是BC边上的中线所以AD既是角BAC的角平分线,又是角BAC所对边(也就是BC)的中线,即两线重合因此三角形ABC是等腰三角形.
BE=CF.∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF.又∵BD=DC,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF.
做EF平行AC、BD.∴∠CAE=∠EAF=∠CEA=∠AEF在三角形AEF与三角形AEC中∵∠ACE=∠EAF,∠CEA=∠AEF,AE=EA.∴⊿ACE≌⊿AFE﹙ASA﹚∴AC=AF同理,⊿EB
1、∵1/2∠ACE=∠D+1/2∠ABC∠ACE=∠A+∠ABC∴1/2(∠A+∠ABC)=∠D+1/2∠ABC1/2∠A+1/2∠ABC=∠D+1/2∠ABC∴∠D=1/2∠A2、∵AB∥CD∴∠
在AB上截取AF=AC,连接DF,∵∠DAB=∠DAC,AD=AD,∴ΔADF≌ΔADC,∴DF=DC,在ΔBDF中,BD-DF
由MN‖BC,∴∠MDB=∠CBD,又由∠ABD=∠CBD,∴∠MDB=∠ABD,∴BM=DM,同理:CN=DN,∴BM+CN+AM+AN=MN+AM+AN=12+18=30.
设,∠abc=2x∠ace=2y∠acb=z得知,z+2y=180°z=180°-2y__i2x+z+40°__ii∠d+x+y+z=180°__iii把i放入ii,2x+180°-2y+40°=18
1.180°-(80°/2)-(60°/2)=110°2.180°-(180°-40°)/2=110°3.180°-(180°-n°)/2=90°+n°/2
∵∠A=∠ACE-∠ABC=2∠DCE-2∠DBC=2(∠DCE-∠DBC),∠D=∠DCE-∠DBC,∴∠A=2∠D=48°.
证明:过E点做AC的平行线交AD的延长线与G,下面证明△EDG与△CDA全等∵∠EDG=∠CDA(对顶角ED=DC(已知)∠DEG=∠DCA(平行线内错角相等)∴△EDG≌△CDA(ASA)∴EG=C
∵∠DCF=1/2∠ACF(已知)又∵∠DCF=1/2ABC+∠D(三角形的外角等于它不相邻的两个内角和)∴1/2∠ACF=1/2ABC+∠D(等量代换)1/2∠ACF-1/2ABC=∠D(移项)∵∠
∵BD,CD分别平分∠ABC和∠ACB∴∠DBC=1/2∠ABC,∴∠DCB=1/2∠ACB∵BE,CE分别平分∠ABC和∠ACB的外角∠MBC,∠NCB∴∠CBE=1/2∠MBC∠,∠BCE=1/2
ab=ac则∠abc=∠acbbd平分∠abccd平分∠acb则∠dbc=∠dcb则△DBC为等腰三角形
∵CD=CE∴∠CDE=∠E∵DE=DB∴∠E=∠DBE,∠ACB=2∠E∵BD平分∠ABC∴∠ABC=2∠E∴∠ABC=∠ACB∴AB=AC∴△ABC是等腰三角形(请看原题.若∠A=∠ABC,则△A
BC=BE+CD.[证明]在BC上取一点F,使∠BOF=∠BOE.∵∠FBO=∠EBO、∠BOF=∠BOE、BO=BO,∴△BOF≌△BOE,∴BF=BE.······①显然有:∠BOE=∠OBC+∠