bd垂直ac ce垂直ab,GF分别为bc,de中点,求gf垂直de
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 20:26:07
延长AG交BC于M,延长AF交BC于N,则由题设可知BG⊥AM,CF⊥AN,又∵BG平分∠ABC,CF平分∠ACB,∴△ABM和△ACN是等腰三角形,∴AC=CN=7,AB=BM=9∴MN=BM+CN
证三角形ABD全等于三角形BCD再答:AB平行且等于CD四边形ABCD是平行四边形
证明:如图,∵AB⊥BD,ED⊥BD ∴∠B=∠D=90°
再答:或者这样也可以解:连结DB,AC,取DB中点O,连结OA,OC∵AB=AD∴OA⊥DB同理可证OC⊥DB又∵OA,OC属于平面OAC中∴DB⊥平面OAC又∵AC属于平面OAC中∴AC⊥BD再答:
作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD
过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A
因为两个三角形为直角三角形,所以角A+角ACB=90°,因为AC垂直于CE,所以角ACB+角DCE=90°,所以角A=角DCE.又因为角B=角D=90°,AB=CD,所以三角形ABC全等于三角形CDE
下面是我自己想的,不知道能不能做对,你自己再看看哈:延长AE到点C,交GF于点P则AC为正方形对角线又因为E为ACBD交点所以点E为HC中点所以BG=GC又因为角EFC=角C=角EGC=90度所以角G
证明:过A作AO⊥平面BCD于H∴AH⊥CD∵AB⊥CD∴CD⊥平面ABH∴CD⊥BH同理BC⊥AH∴H为△BCD垂心∴CH⊥BD(1)又AH⊥平面BCD∴AH⊥BD(2)由(1)(2)BD⊥平面AC
证明:作AO垂直平面BCD,垂足为O,则CD垂直AO,有AB垂直CD,所以CD垂直平面ABO,故CD垂直BO.同理CO垂直BD.所以O为垂心,DO垂直BC.可得BC垂直平面ADO,所以AD垂直BC
∠ABD+∠1=∠GFC+∠2=90度∠ABD=∠GFCab//gf
利用边角边相等的定理来证明
连结BC,AD.设A在面BCD上的射影为O.连结BO,CO,DO.则∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥面ABO.而BO在平面ABO内,∴BO⊥CD.同理,DO⊥BC.因此,O是△BCD
虚线连接DE,虚线与AB连接点为F,与AC连接的点为G,因为垂直关系,CE垂直CB,BD垂直BC,证明BDEC为长方形,然后根据AB=AC,证明角ABC=角ACB,然后,因为BC平行于DE,就证明了角
解题思路:根据题意,由平行线的知识可证解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ
因为AB垂直BD,ED垂直BD,所以角B=角D=90度,又因为AB=CD,BC=DE,所以三角形abc全等于三角形cdb,所以角a=角ecd又因为角a+角acb=90度,所以角ecd+角acb=90度
这个题目中“DE⊥AC,CD⊥AB”.GF⊥AB.证明:∵AC⊥BC,DE⊥AC,∴DE∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴CD∥GF,∵CD⊥AB,∴GF⊥AB.
证明:取BC中点F,连接EF,DF∵CE⊥AB,BD⊥AC∴⊿BCE和⊿BCD是直角三角形,EF,DF分别是两个三角形斜边BC的中线∴EF=DF=½BC=BF=CFB,C,D,E到F点的距离
作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD
因为AB垂直BEDE垂直BE所以角B=角E因为BF=CE所以BF+FC=CE+FC即BC=EF在三角形ABC与三角形DEF中AB=DE角B=角EBC=EF所以三角形ABC与三角形DEF全等所以角DFE