把f(x)=1 (2-x)展开成x-1的幂级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:58:04
把f(x)=1 (2-x)展开成x-1的幂级数
求f(x)=arctan(2(x-1)/(1+4x))展开成x的幂级数

最后给出前25项的系数的数值:-ArcTan[2],2,0,-8/3,0,32/5,0,-128/7,0,512/9,0,-2048/11,0,8192/13,0,-32768/15,0,131072

将函数展开为幂级数将函数f(x)=1/(x²+x-2)展开成X的幂级数

f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2

将函数f(x)=1/(x^2+3x+2)展开成x的幂级数

f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|

把函数f(x)=1/(x^2+4x+9) 展开成(x+2)的幂级数?分母怎么处理?

令x+2=t,则x=t-2,展开成t的幂级数即可f(x)=1/[(x+2)^2+5]=1/(t^2+5)=0.2/(1+0.2t^2)=0.2[1-0.2t^2+(0.2t^2)^2-(0.2t^2)

将f(x)=1/(x∧2-4x-5)展开成x的幂级数

提示:先把f(x)写成:f(x)=-1/6*1/(1+x)-1/30*1/(1-x/5)1/(1+x)和1/(1-x/5)会展开吧.

将函数f(x)=1/(x+1)展开成(x-2)的幂级数

1/(x+1)=1/(3+x-2)=(1/3)/[1+(x-2)/3)]=(1/3)∑(0,+∞)(-1)^n[(x-2)/3)]^n|x-2|

求将函数f(x)=1/(2-3x+x)展开成x的幂级数?

f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)

将函数f(x)=1/x^2展开成(x+1)的幂级数

就讲一下思路了.(1)首先把f(X)=1/x^2看成是g(x)=-1/x的导数,也就是f(x)=g'(x).(2)将g(x)展开成x+1的幂级数.g(x)=-1/x=1/(1-(x+1))这样就可以把

把函数f(x)=1/(2-x)²展开成x的幂级数,并求展开式成立的区间

f=(x-2)^(-2)f'=-2(x-2)^(-3)f"=3!(x-2)^(-4)..f'n=(-1)^n*(n+1)!(x-2)^(-n-2)f'n(0)=(-1)^n*(n+1)!(-2)^(-

把f(x)=ln(1+x)展开成麦克劳林级数

ln(1+x)=x-1/2*x^2+1/3*x^3-1/4*x^4.+((-1)^n)/n+1)x^(n+1)

把f(x)=(1+x)ln(1+x)展开成麦克劳林级数

再问:第三行最后的那个+x是怎么算出来的啊?再答:将In(1+x)展开,第一项就是x,单独的提出来。这样其余的项就可以与前面xIn(1+x)的合并。

函数f(x)=x/(2-x)展开成x的幂级数f(x)

再问:答案上是你得到的答案加上-1,那么这个-1怎么来的啊再答:-1?加在哪?指数上?还是整体的结果加“-1”?答案错了。再问:整体再答:那就肯定答案错了。下面说明一下,为什么答案错了:1、用幂级数展

将f(x)=x|x*x+x-2展开成x的幂级数

先将展开成部分分式f(x)=-1/3*1/(1-x)+2/3*1/(1+x)那么1/(1-x)和1/(1+x)会展开吧下略x/(x^2+x-2)=-(x/2)-x^2/4-(3x^3)/8-(5x^4

将f(x)=1/(x^2+5x+6)展开成(x+1)的幂级数

可以利用已知的展开式进行计算,如图.经济数学团队帮你解答.请及时评价.谢谢!

把函数f(x)=xe^x展开成x的幂级数

e^x=1+x+x^2/2!+..+x^n/n!+...xe^x=x+x^2+x^3/2!+..+x^(n+1)/n!+.