把f(z)=1 z(1-z)展开成在下列区域收敛的洛朗级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:58:19
把f(z)=1 z(1-z)展开成在下列区域收敛的洛朗级数
将函数f(z)=1/(z+2)(z+1)在z=a的领域内展开为泰勒级数

f(z)=1/(z+1)-1/(z+2)为了在z=a点展开,我们做如下变形:=1/[(a+1)-(a-z)]-1/[(a+2)-(a-z)]=[1/(a+1)]*{1/[1-(a-z)/(a+1)]}

您可不可以帮我把e^(z/z-1)展开成z的幂级数?

(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1

将函数f(z)=1/(z^3+1),在Z0=0展开成泰勒级数

由1/(1-z)=1+z+z^2+z^3+...将z换成-z^3得:f(z)=1/(1+z^3)=1-z^3+z^6-z^9+z^12.再问:加我QQ2605316413,有点事咱们商量下呗~

f(z)=z/(z+1)(z+2)在z0=2处展开成泰勒级数,要详细步骤

先裂项f(z)=z/(z+1)(z+2)=-1/(1+z)+2/(2+z)再根据需要变项f(z)=-1/(3+z-2)+2/(4+z-2)=(-1/3){1/[1-[(-1)(z-2)/3]}+(1/

请将函数 f(z)=1/(z(z+i)) 分别在下列区域内展开成洛朗级数

你是上海理工的吧?来我宿舍,三公寓四单元307,我可以教你

设函数f(z)=1/((z+10)*(z+3)*(z-2)) 重赏!

首先f(z)的孤立奇点只有z=2,z=-3,z=-10这三个,而f(z)在同一个圆环域内部展开成洛朗级数是唯一的,所以本题要找的其实就是分别以这三个孤立奇点为圆心的最大解析圆环域有多少个,对于z=2,

F(z)=|1+z|-z的共扼复数,且F(-z)=10-3i,求复数z

设z=a+bi.F(-z)=|1-z|+z=√[(1-a)²+(-b)²]+a+bi=10-3ib=-3.√[(1-a)²+3²]+a=10.解得:a=5.z=

求积分计算f{|z|=pi}(z/(z+1))*(e^(2/(z+1)))dz

f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|

已知f(z)=1+IzI-z,且f(-z)=10+3i,求复数z

再问:就是不懂f(-z)=1+I-zI+z再问:就是不懂f(-z)=1+I-zI+z再答:就是z被-z替换掉了再问:那1不是替换成-1?再答:只是换有z的地方

试将函数f(z)=1/(z-4)(z-3)以z=2为中心在全平面展开为泰勒或洛朗级数.

等下,我传图片给你再问:你qq是多少啊?私聊,我还有几道数学物理方法题啊,虽然不难但是对于我这个白痴来讲很难啊。我一定会很感谢你的再答:794429483.采纳后再加

已知:f(z)=|1+Z|-.Z

f(Z)=|1+z|-.Z,f(-z)=|1-z|+.Z设z=a+bi  (a、b∈R)  由f(-z)=10+3i得|1-(a+bi)|+a-bi=10+3i

把F(z)=1/z(z-1)在1

点击放大:

求f(z)=e^z/(z^2-1)在无穷远点的留数

首先找出f(z)的奇点,为z=±1且都是一介极点那么无穷远点的留数就等于这两点的留数和的相反数,z=-1点的留数,根据定理得到{(e^z)/(z-1)|[z=-1]}=(-1/2)e^(-1)z=1点

幂级数展开 f(z)=2z/z+2在点z=1展成幂级数,并求幂级数的收敛半径

http://hiphotos.baidu.com/zjhz8899/pic/item/fd73d4001e22e7277bec2c87.jpeg

哪位大神可以帮我把e^(z/z-1)展开成z的幂级数,

(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1

将函数 f(Z)=Z/Z+2展开成Z-2的幂级数

f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)

求f(z)=z/(z+2)展开为z的泰勒级数...

f(z)=1-2/(z+2)=1-1/[1+(z/2)]=1-1/[1-(-z/2)],根据1/(1-z)=1+z+z^2+...,所以f(z)=z/2-z^2/2^2+z^3/2^3-...+(-1

在0<|Z|<1的环域上将函数f(z)=1/z(1-z)展开成洛朗级数.

1/(1-z)=1+z+z^2+...f(z)=1/[z(1-z)]=1/z+1+z+z^2+.

把函数f(z)=1/3z-2 展开成z的幂级数

1/z=1/(1-(1-z))=1+(1-z)+(1-z)^2+.f(z)=1/3*(1+(1-z)+(1-z)^2+.)+2